972 resultados para Crystal growth from melt
Resumo:
The crystal and molecular structures of the potential antidepressant drug fenobam and its derivatives are examined in terms of the preferred form among the two possible tautomeric structures. In this study, chemical derivatization has been utilized as a means to ``experimentally simulate'' the tautomeric preference and conformational variability in fenobam. Eight new derivatives of fenobam have been synthesized, and structural features have been characterized by single-crystal X-ray diffraction and NMR spectroscopy. The specific tautomeric preference found in all of these compounds and their known crystal forms have been construed in terms of the stabilizing intramolecular N-H center dot center dot center dot O and N-H center dot center dot center dot S hydrogen bonding. The hierarchy of intramolecular hydrogen bonds evidenced as the preference of the C-H center dot center dot center dot O hydrogen bond over C-H center dot center dot center dot N and that of the C-H center dot center dot center dot N hydrogen bond over C-H center dot center dot center dot S explains the two distinct conformations adopted by fenobam and thiofenobam derivatives. The relative energy values of different molecular conformations have been calculated and compared.
Resumo:
When quenched with liquid N-2, a room temperature liquid, 4-fluorobenzoyl chloride, generates a new crystalline form that appears to be polytypic to the previously reported form. The structural and energetic correlations between these forms trace a crystallization pathway of the compound.
Resumo:
We report the preparation, analysis, and phase transformation behavior of polymorphs and the hydrate of 4-amino-3,5-dinitrobenzamide. The compound crystallizes in four different polymorphic forms, Form I (monoclinic, P2(1)/n), Form II (orthorhombic, Pbca), Form III (monoclinic, P2(1)/c), and Form IV (monoclinic, P2(1)/c). Interestingly, a hydrate (triclinic, P (1) over bar) of the compound is also discovered during the systematic identification of the polymorphs. Analysis of the polymorphs has been investigated using hot stage microscopy, differential scanning calorimetry, in situ variable-temperature powder X-ray diffraction, and single-crystal X-ray diffraction. On heating, all of the solid forms convert into Form I irreversibly, and on further heating, melting is observed. In situ single-crystal X-ray diffraction studies revealed that Form II transforms to Form I above 175 degrees C via single-crystal-to-single-crystal transformation. The hydrate, on heating, undergoes a double phase transition, first to Form III upon losing water in a single-crystal-to-single-crystal fashion and then to a more stable polymorph Form I on further heating. Thermal analysis leads to the conclusion that Form II appears to be the most stable phase at ambient conditions, whereas Form I is more stable at higher temperature.
Resumo:
Experimental and theoretical charge density analyses on 2,2-dibromo-2,3-dihydroinden-1-one have been carried out to quantify the topological features of a short CBr....O halogen bond with nearly linear geometry (2.922 angstrom, angle CBr....O = 172.7 degrees) and to assess the strength of the interactions using the topological features of the electron density. The electrostatic potential map indicates the presence of the s-hole on bromine, while the interaction energy is comparable to that of a moderate OH....O hydrogen bond. In addition, the energetic contribution of CH.....Br interaction is demonstrated to be on par with that of the CBr....O halogen bond in stabilizing the crystal structure.
Resumo:
Pyrazinoic acid, the active form of the antitubercular pro-drug Pyrazinamide, is an amphiprotic molecule containing carboxylic acid and pyridine groups and therefore can form both salts and cocrystals with relevant partner molecules. Cocrystallization of pyrazinoic acid with isomeric pyridine carboxamide series resulted in a dimorphic mixed-ionic complex with isonicotinamide and in eutectics with nicotinamide and picolinamide, respectively. It is observed that with alteration of the carboxamide position, steric and electrostatic compatibility issues between molecules of the combination emerge and affect intermolecular interactions and supramolecular growth, thus leading to either cocrystal or eutectic for different pyrazinoic acid-pyridine carboxamide combinations. Intermolecular interaction energy calculations have been performed to understand the role of underlying energetics on the formation of cocrystal/eutectic in different combinations. On the other hand, two molecular salts with piperazine and cytosine and a gallic acid cocrystal of the drug were obtained, and their X-ray crystal structures were also determined in this work.
Resumo:
Quantitative evaluation of the mechanical behavior of molecular materials by a nanoindentation technique has gained prominence recently. However, all the reported data have been on room-temperature properties despite many interesting phenomena observed in them with variations in temperature. In this paper, we report the results of nanoindentation experiments conducted as a function of temperature, T, between 283 and 343 K, on the major faces of three organic crystals: saccharin, sulfathiazole (form 2), and L-alanine, which are distinct in terms of the number and strength of intermolecular interactions in them. Results show that elastic modulus, E, and hardness, H, decrease markedly with increasing T. While E decreases linearly with T, the variations in H with T are not so, and were observed to drop by similar to 50% over the range of T investigated. The slope of the linear fits to E vs T for the organic crystals was found to be around 1, which is considerably higher than the values of 0.3-0.5 reported in the literature for metallic, ionic, and covalently bonded crystalline materials. Possible implications of the observed remarkable changes in H for pharmaceutical manufacturing are highlighted.
Resumo:
Cocrystallization of pyridoxine (vitamin B6) with several biologically important molecules was undertaken with the intent of successfully designing various hydrogen bonded adducts such as salts, cocrystals, and eutectics. Pyridoxine formed eutectics with isoniazid (an antitubercular drug) and nicotinic acid (vitamin B3) and molecular salts with para-aminobenzoic acid (a bioactive) and saccharin (an artificial sweetener), respectively, in accordance to our design strategy. A salt cocrystal, a precisely conjugate acid-base cocrystal, was obtained for the pyridoxine-para-nitrobenzoic acid combination. The role of supramolecular affinity of hydrogen bonding functional groups and Delta pK(a) differences leading to the formation of above diverse adducts was discussed. This study underpins the need for full-fledged supramolecular compatibility studies of multivitamin/drug combinations toward the development of optimal and/or synergistic combination formulations.
Resumo:
An organic supramolecular ternary salt (gallic acid:isoniazid:water; GINZH) examined earlier for its proton conducting characteristics is observed to display step-like dielectric behavior across the structural phase transition mediated by loss of water of hydration at 389 K. The presence of hydration in the crystal lattice along with proton mobility between acid base pairs controls the ``ferroelectric like'' behavior until the phase transition temperature.
Resumo:
Ho3+ (0.25-7 mol%) doped Sr2CeO4 nanophosphors were synthesized by solution combustion method using urea as fuel. The structural properties of the nanophosphors were investigated by powder X-ray diffraction studies (PXRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. UV-Visible and photoluminescence (PL) spectroscopic techniques were used for analysing the optical properties of the nanoparticles. PXRD and TEM results revealed the formation of Sr2CeO4: Ho3+ nanocrystalline particles with orthorhombic crystal structure. From the UV-Vis studies the optical band gap energy found to decrease from 5.9 to 5.74 eV with increase in dopant concentration. The PL spectra exhibit the broad excitation band from 200 to 400 nm which concurs well with the commercial near UV LED. The PL spectra vary with the dopant content due to energy transfer from the host to the activator. In this present work we demonstrate that color tuning of phosphor can be achieved by merely varying the Ho3+ ions concentration. The CIE and CCT chromaticity coordinates suggests Sr2CeO4: Ho3+ nanophosphors may be potentially applicable as promising single - phased phosphors for lighting applications. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Composition and microstructure of the composite films can be tailored by controlling the CVD process parameters if an appropriate model can be suggested for quantitative prediction of growth. This is possible by applying equilibrium thermodynamics. A modification of such standard modeling procedure was required to account for the deposition of a hybrid film comprised of carbon nanotubes (CNTs), metallic iron (Fe), and magnetite (Fe3O4), a composite useful for energy storage. In contrast with such composite nature of the deposits obtained by inert-ambient CVD using Fe(acac)3 as precursor, equilibrium thermodynamic modeling with standard procedure predicts the deposition of only Fe3C and carbon, without any co-deposition of Fe and Fe3O4. A modification of the procedure comprising chemical reasoning is therefore proposed herein, which predicts simultaneous deposition of FeO1-x, Fe3C, Fe3O4 and C. At high temperatures and in a carbon-rich atmosphere, these convert to Fe3O4, Fe and C, in agreement with experimental CVD. Close quantitative agreement between the modified thermodynamic modeling and experiment validates the reliability of the modified procedure. Understanding of the chemical process through thermodynamic modeling provides potential for control of CVD process parameters to achieve desired hybrid growth. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Reactions between Zn(NO3)(2)center dot 6H(2)O, Na2S2O3, 4,4'-bipyridine (bpy), 1,2-bis(4-pyridyl)ethene (bpe), 1,2-bis (4-pyridyl) ethane (bpa), and 1,3-bis(4-pyridyl)propane (bpp) under solvothermal conditions resulted in four new zinc thiosulfate hybrid compounds. Compound I has four-membered zinc thiosulfate rings connected by the ligand, 1,3-bis(4-pyridyl)propane (bpp) forming a two-dimensional structure. Compounds II-IV have one-dimensional zinc thiosulfate chains connected by the ligands, bpy (II), bpe (III), and bpa (IV) giving rise to three-dimensional structures. All the four-structures exhibit 3-fold interpenetration. Proton conductivity studies indicate reasonable proton mobility at 34 degrees C and at 98% relative humidity. The compounds also exhibit Lewis acid character and good photocatalytic activity for the decomposition of cationic dyes.
Resumo:
3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.
Resumo:
采用配液结晶法制取了溶菌酶蛋白质晶体,使用动态光散射测量了溶液中聚集体的颗粒度几率分布;使用Zeiss显微镜测定了溶菌酶(110)晶面的生长速度.实验表明:随着蛋白质和NaCl浓度的增加,溶液中聚集体的颗粒尺寸也相应增加.随着反应时间的增加,溶菌酶分子在溶液中的聚集反应,逐渐达到平衡;在蛋白质和NaCl浓度较高时,溶菌酶晶体的(110)面生长较快,而在蛋白质和NaCl浓度较低时,该晶面生长较慢.基于二维成核生长机理,从晶体生长动力学理论方程出发,计算了二维成核的形成能a=4.01×10-8J?cm-2.
Resumo:
光散射技术广泛应用于生物大分子的晶体生长研究中,它包括静态光散射和动态光散射两种。利用静态光散射可以测定蛋白质溶液渗透的第二维里系数;利用动态光散射可以测定蛋白质溶液的平动扩散系数,获得溶液中蛋白质粒子的流体力学半径及分布情况,分离蛋白质结晶的成核与生长过程,研究大分子的聚集行为和晶体生长的动力学。借助光散射技术可以实现蛋白质晶体生长过程的动态控制。近些年光散射仪器向着小型化、轻便化的方向发展,光散射技术不断得到改进,日益完善,不仅用于地面实验,也应用于空间领域蛋白质晶体生长的研究中。
Resumo:
The aggregates in lysozyme solution with different NaCl concentration were investigated by Atomic Force Microscope (AFM). The AFM images show that there exist lysozyme monomers, n-mers and clusters in lysozyme solution when the conditions are not suitable for crystal growth. In favorable conditions for crystal growth, the lysozyme clusters disappear and almost only monomers exist in solution.