954 resultados para Critical incident technique
Resumo:
Glass transition and relaxation of the glycerol-water (G-W) binary mixture system have been studied over the glycerol concentration range of 5-85 mol% by using the highly sensitive technique of electron spin resonance (ESR). For the water rich mixture the glass transition,sensed by the dissolved spin probe, arises from the vitrified mesoscopic portion of the binary system. The concentration dependence of the glass transition temperature manifests a closely related molecular level cooperativity in the system. A drastic change in the mesoscopic structure of the system at the critical concentration of 40 mol is confirmed by an estimation of the spin probe effective volume in a temperature range where the tracer reorientation is strongly coupled to the system dynamics.
Resumo:
In order to protect the critical electronic equipment/system against damped sine transient currents induced into its cables due to transient electromagnetic fields, switching phenomena, platform resonances, etc. it is necessary to provide proper hardening. The hardness assurance provided can be evaluated as per the test CS 116 of MIL STD 461E/F in laboratory by generating & inducing the necessary damped sine currents into the cables of the Equipment Under Test (EUT). The need and the stringent requirements for building a damped sine wave current generator for generation of damped sine current transients of very high frequencies (30 MHz & 100 MHz) have been presented. A method using LC discharge for the generation has been considered in the development. This involves building of extremely low & nearly loss less inductors (about 5 nH & 14 nH) as well as a capacitor & a switch with much lower inductances. A technique for achieving this has been described. Two units (I No for 30 MHz. & 100 MHz each) have been built. Experiments to verify the output are being conducted.
Resumo:
The idea of retinal cell transplantation as a potential treatment for age-related retinal degeneration, a leading cause of blindness in the Western world, has been around for a number of decades. To date, however, it has not been entirely successful; one of the main reasons for this is the lack of an ideal substratum for the retinal cells, specifically for the growth of retinal pigment epithelial cells prior to transplantation. This chapter reviews the reasoning behind this potential treatment, the development of animal transplantation models for human trials, the prerequisites of an ideal substratum, the past and current research on substratum materials, and the potential for future developments in this area.
Resumo:
The Molecular Adsorbent Recirculating System (MARS) is an extracorporeal albumin dialysis device which is used in the treatment of liver failure patients. This treatment was first utilized in Finland in 2001, and since then, over 200 patients have been treated. The aim of this thesis was to evaluate the impact of the MARS treatment on patient outcome, the clinical and biochemical variables, as well as on the psychological and economic aspects of the treatment in Finland. This thesis encompasses 195 MARS-treated patients (including patients with acute liver failure (ALF), acute-on-chronic liver failure (AOCLF) and graft failure), and a historical control group of 46 ALF patients who did not undergo MARS. All patients received a similar standard medical therapy at the same intensive care unit. The baseline data (demographics, laboratory and clinical variables) and MARS treatment-related and health-related quality-of-life data were recorded before and after treatment. The direct medical costs were determined for a period of 3.5 years.Additionally, the outcome of patients (survival, native liver recovery and need for liver transplantation) and survival predicting factors were investigated. In the outcome analysis, for the MARS-treated ALF patients, their 6-month survival (75% vs. 61%, P=0.07) and their native liver recovery rate (49% vs. 17%, P<0.001) were higher, and their need for transplantations was lower (29% vs. 57%, P= 0.001) than for the historical controls. However, the etiological distribution of the ALF patients referred to our unit has changed considerably over the past decade and the percentage of patients with a more favorable prognosis has increased. The etiology of liver failure was the most important predictor of the outcome. Other survival predicting factors in ALF included hepatic encephalopathy, the coagulation factors and the liver enzyme levels prior to MARS treatment. In terms of prognosis, the MARS treatment of the cirrhotic AOCLF patient seems meaningful only when the patient is eligible for transplantation. The MARS treatment appears to halt the progression of encephalopathy and reduce the blood concentration of neuroactive amino acids, albumin-bound and water-soluble toxins. In general, the effects of the MARS treatment seem to stabilize the patients, thus allowing additional time either for the native liver to recover, or for the patients to endure the prolonged waiting for transplantation. Furthermore, for the ALF patients, the MARS treatment appeared to be less costly and more cost-efficient than the standard medical therapy alone. In conclusion, the MARS treatment appears to have a beneficial effect on the patient outcome in ALF and in those AOCLF patients who can be bridged to transplantation.
Resumo:
The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.
Resumo:
Cracks in civil structures can result in premature failure due to material degradation and can result in both financial loss and environmental consequences. This thesis reports an effective technique using Acoustic Emission (AE) technique to assess the severity of the crack propagation in steel structures. The outcome of this work confirms that combination of AE parametric analysis and signal processing techniques can be used to evaluate crack propagation under different loading configurations. The technique has potential application to assess and monitor the condition of civil structures.
Resumo:
In this paper, a new technique is presented to increase the bandwidth for a single stage amplifier. Usually, -3 dB bandwidth of single stage amplifier is in few MHz. High output impedance and subsequent capacitive loading decrease the bandwidth of amplifier. The presented technique uses a load which itself acts as bandwidth enhancer. This high speed amplifier is designed on 180 nm CMOS technology, operates at 2.5 V power supply. This amplifier is succeeded by an output buffer to achieve a better linearity, high output swing and required output impedance for matching.
Resumo:
A simple effective pyrolysis technique has been developed to synthesize aligned arrays of multi-walled carbon nanotubes (MWCNTs) without using any carrier gas in a single-stage furnace at 700 °C. This technique eliminates nearly the entire complex and expensive machinery associated with other extensively used methods for preparation of CNTs such as chemical vapour deposition (CVD) and pyrolysis. Carbon source materials such as xylene, cyclohexane, camphor, hexane, toluene, pyridine and benzene have been pyrolyzed separately with the catalyst source material ferrocene to obtain aligned arrays of MWCNTs. The synthesized CNTs have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. In this technique, the need for the tedious and time-consuming preparation of metal catalysts and continuously fed carbon source material containing carrier gas can be avoided. This method is a single-step process where not many parameters are required to be monitored in order to prepare aligned MWCNTs. For the production of CNTs, the technique has great advantages such as low cost and easy operation.
Resumo:
With high-resolution photoemission spectroscopy measurements, the density of states (DOS) near the Fermi level (E-F) of double perovskite Sr2FeMoO6 having different degrees of Fe/Mo antisite disorder has been investigated with varying temperature. The DOS near E-F showed a systematic depletion with increasing degree of disorder, and recovered with increasing temperature. Altshuler-Aronov (AA) theory of disordered metals well explains the dependences of the experimental results. Scaling analysis of the spectra provides experimental indication for the functional form of the AA DOS singularity.
Resumo:
We consider diffusively coupled map lattices with P neighbors (where P is arbitrary) and study the stability of the synchronized state. We show that there exists a critical lattice size beyond which the synchronized state is unstable. This generalizes earlier results for nearest neighbor coupling. We confirm the analytical results by performing numerical simulations on coupled map lattices with logistic map at each node. The above analysis is also extended to two-dimensional P-neighbor diffusively coupled map lattices.
Resumo:
Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.
Resumo:
This paper presents design of a Low power 256x72 bit TCAM in 0.13um CMOS technology. In contrast to conventional Match line (ML) sensing scheme in which equal power is consumed irrespective of match or mismatch, the ML scheme employed in this design allocates less power to match decisions involving a large number of mismatched bits. Typically, the probability of mismatch is high so this scheme results in significant CAM power reduction. We propose to use this technique along with pipelining of search operation in which the MLs are broken into several segments. Since most words fail to match in first segment, the search operation for subsequent segments is discontinued, resulting in further reduction in power consumption. The above architecture provides 70% power reduction while performing search in 3ns.