893 resultados para Corrosion Resistance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A circular array of Piezoelectric Wafer Active Sensor (PWAS) has been employed to detect surface damages like corrosion using lamb waves. The array consists of a number of small PWASs of 10 mm diameter and 1 mm thickness. The advantage of a circular array is its compact arrangement and large area of coverage for monitoring with small area of physical access. Growth of corrosion is monitored in a laboratory-scale set-up using the PWAS array and the nature of reflected and transmitted Lamb wave patterns due to corrosion is investigated. The wavelet time-frequency maps of the sensor signals are employed and a damage index is plotted against the damage parameters and varying frequency of the actuation signal (a windowed sine signal). The variation of wavelet coefficient for different growth of corrosion is studied. Wavelet coefficient as function of time gives an insight into the effect of corrosion in time-frequency scale. We present here a method to eliminate the time scale effect which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the corrosion with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed for varying damage sizes and the results appear promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a concept and report experimental results based on a circular array of Piezoelectric Wafer Active Sensors (PWASs) for rapid localization and parametric identification of corrosion type damage in metallic plates. Implementation of this circular array of PWASs combines the use of ultrasonic Lamb wave propagation technique and an algorithm based on symmetry breaking in the signal pattern to locate and monitor the growth of a corrosion pit on a metallic plate. Wavelet time-frequency maps of the sensor signals are employed to obtain an insight regarding the effect of corrosion growth on the Lamb wave transmission in time-frequency scale. We present here a method to eliminate the time scale, which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the damage with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed from the wavelet coefficients for varying damage sizes and the results appear promising. Damage index is plotted against the damage parameters for frequency sweep of the excitation signal (a windowed sine signal). Results of corrosion damage are compared with circular holes of various sizes to demonstrate the applicability of present method to different types of damage. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 × 10-13 Nm-2 and sulfur potentials ranging from 0.19 × 10-2 Nm-2 to 33 × 10-2 Nm-2. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (P S 2 ± 2.7 × 10-2 Nm-2) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfidation. At low sulfur potentials (P S 2 ± 0.19 × 10-2 Nm-2) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases. Thermochemical diagrams for the Fe-Cr-S-O, Fe-Ni-S-O, Cr-Ni-S-O, and Si-Cr-S-O systems were constructed, and the experimental results are discussed in relation to these diagrams. Based on this comparison, reasonable corrosion mechanisms were developed. At high sulfur potentials, oxide and sulfide phases initially nucleate as separate islands. Overgrowth of the oxide by the sulfide occurs and an exchange reaction governs the corrosion process. Preoxidation at low oxygen potentials and 1150 K is beneficial in suppressing sulfidation at high sulfur potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary phase relations in the Co-Cr-S system at 1223 K were determined using microprobe analysis of quenched samples. The results are consistent with the data available on the binary systems. A complete solid solution exists between cobalt monosulfide and chromium monosulfide. The CoCr2S4 thiospinel is the only ternary compound formed. A sulfur potential diagram was constructed for the region involving equilibrium between alloy and monosulfide based on thermodynamic data on the Co-Cr, Co-S, and Cr-S binary systems and the ternary information obtained in this study. The sulfidation behavior of Co-Cr alloys reported in the literature is discussed in light of the sulfur potential diagram.