888 resultados para Corpus Paroemiographorum Graecorum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To determine stage-specific and average disability weights (DWs) of malignant neoplasm and provide support and evidence for study on burden of cancer and policy development in Shandong province. Methods Health status of each cancer patient identified during the cancer prevalence survey in Shandong, 2007 was investigated. In line with the GBD methodology in estimating DWs, the disability extent of every case was classified and evaluated according to the Six-class Disability Classification version and then the stage-specific weights and average DWs with their 95 % confidence intervals were calculated, using SAS software. Results A total of 11 757 cancer cases were investigated and evaluated. DWs of specific stage of therapy, remission, metastasis and terminal of all cancers were 0.310, 0.218, 0.450 and 0.653 respectively. The average DW of all cancers was 0.317(95 % CI:0.312-0.321). Weights of different stage and different cancer varied significantly, while no significant differences were found between males and females. DWs were found higher (>0.4) for liver cancer, bone cancer, lymphoma and pancreas cancer. Lower DWs (<0.3) were found for breast cancer, cervix uteri, corpus uteri, ovarian cancer, larynx cancer, mouth and oropharynx cancer. Conclusion Stage-specific and average DWs for various cancers were estimated based on a large sample size survey. The average DWs of 0.317 for all cancers indicated that 1/3 healthy year lost for each survived life year of them. The difference of DWs between different cancer and stage provide scientific evidence for cancer prevention strategy development. Abstract in Chinese 目的 测算各种恶性肿瘤的分病程残疾权重和平均残疾权重,为山东省恶性肿瘤疾病负担研究及肿瘤防治对策制定提供参考依据. 方法 在山东省2007年恶性肿瘤现患调查中对所有恶性肿瘤患者的健康状况进行调查,参考全球疾病负担研究的方法 ,利用六级社会功能分级标准对患者残疾状况进行分级和赋值,分别计算20种恶性肿瘤的分病程残疾权重和平均残疾权重及其95%CI. 结果 共调查恶性肿瘤患者11757例,所有恶性肿瘤治疗期、恢复期、转移期和晚期的残疾权重分别为0.310、0.218、0.450和0.653,平均残疾权重为0.317(95%CI:0.312~0.321).不同恶性肿瘤和不同病程阶段的残疾权重差别显著,性别间差异无统计学意义.肝癌、骨癌、淋巴瘤和胰腺癌平均残疾权重较高(>0.4),乳腺癌、子宫体癌、子宫颈癌、卵巢癌、喉癌和口咽部癌症相对较低(<0.3). 结论 山东省恶性肿瘤平均残疾权重为0.317,即恶性肿瘤患者每存活1年平均损失近1/3个健康生命年;不同恶性肿瘤和不同病程阶段的残疾权重差别为肿瘤防治对策的制定具有重要意义.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It’s hard not to be somewhat cynical about the self-congratulatory ‘diversity’ at the centre of the growing calendar of art bi/tri-ennials. The –ennial has proven expedient to the global tourism circuit, keeping regional economies and a relatively moderate pool of transnational artists afloat and the Asia Pacific Triennial is no exception. The mediation of representation that is imperative to the ‘best of’ formats of these transnational art shows hinges on a categorical backwardness that can feel more than a little like a Miss World competition than a progressive art show because the little tag in parenthesis after each artist’s name seems just as politically precarious now as it did forty years ago. Despite a weighty corpus of practical and critical work to the contrary, identity politics are so intrinsic to art capitalization, for both artists and institutions, that extricating ourselves from the particular and strategic politics of identification is seemingly impossible. Not that everyone wants to of course.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, which has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering is rarely known. Patterns are always thought to be more representative than single terms for representing documents. In this paper, a novel information filtering model, Pattern-based Topic Model(PBTM) , is proposed to represent the text documents not only using the topic distributions at general level but also using semantic pattern representations at detailed specific level, both of which contribute to the accurate document representation and document relevance ranking. Extensive experiments are conducted to evaluate the effectiveness of PBTM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model achieves outstanding performance.