969 resultados para Core Conflictual Relationship Theme (CCRT)
Resumo:
Fluorene and its derivatives are well-known organic semiconducting materials in the field of opto-electronic devices because of their charge transport properties. Three new organic semiconducting materials, namely, 2,2'-((9,9-butyl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C4; 2,2'-((octyl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C8; and 2,2'-((9,9-dodecayl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C12 with a benzothiazole-fluorene backbone, were synthesized and characterized for their photophysical properties. A phenomenon of concomitant polymorphism has been investigated in the first two derivatives (C4 and C8) and has been analyzed systematically in terms of the packing characteristics involving pi ... pi interactions. The conformational flexibility of the pi-conjugated 2,2'-(fluorene-2,7-diyl)bis(4,1 phenylene)bisbenzod]thiazole backbone coupled with orientational freedom of the terminal alkyl chains were found to be the key factors responsible for these polymorphic modifications. Attempts to grow suitable crystals for single crystal X-ray diffraction of compound C12 were unsuccessful.
Resumo:
Mesogens containing four rings in the main core can accommodate one terminal and two nearby lateral chains on each outside aromatic ring. These compounds containing six chains present an enantiotropic nematic range which is influenced by the rigidity of the links. The conformational behaviour of the first methyleneoxy group within the chains was investigated by one and two dimensional C-13 NMR. The sign of the jump in chemical shifts when entering the nematic phase indicates the folding of each lateral branch. Dipolar oscillations during cross-polarization contact provide the values of the bond order parameter. The two First lateral fragments do not behave in the same way, demonstrating the influence of the fragment along which the chain is back: folded.
Resumo:
Sandwich structures, especially those with honeycomb and grid structures as the core material, are very commonly employed in aircraft structures. There is an increasing use of closed-pore rigid syntactic foams as core materials in sandwich constructions because they possess a number of favourable properties. The syntactic foams, owing to their structure and formation, behave differently under compression compared to other traditionally used core materials. In the present study, therefore, syntactic foam core sandwich constructions are evaluated for their behaviour under compression in both edgewise and flatwise orientations. Further, the work characterises the relative performance of two sets of sandwich materials, one containing glass-epoxy and the other, glass/carbon hybrid-epoxy skins. As non-standard geometry test specimens were involved, only a comparative evaluation was contemplated in this approach. The experiments indicate that the nature of the reinforcement fabric in the skin has a bearing on the test results in edgewise orientation. Thus, the tendency towards initiation of vertical crack in the central plane of the core material, which is a typical fracture event in this kind of material, was found to occur after a delay for the specimens containing the glass fabric in the skin. Attempts are made to establish the correlation between observations made on the test specimen visually during the course of testing and the post-compression microscopic examinations of the fracture features.
Resumo:
A common synthetic approach to the recently reported sesquiterpene kelsoene 1 and the tetraterpene poduran 5, bearing a novel tricyclo[6.2.0.0(2,6)]decane framework, from commercially available 1,5-COD and leading to the first construction of the carbocyclic core present in these natural products is delineated.
Resumo:
Simulation is an important means of evaluating new microarchitectures. With the invention of multi-core (CMP) platforms, simulators are becoming larger and more complex. However, with the availability of CMPs with larger caches and higher operating frequency, the wall clock time required for simulating an application has become comparatively shorter. Reducing this simulation time further is a great challenge, especially in the case of multi-threaded workload due to indeterminacy introduced due to simultaneously executing various threads. In this paper, we propose a technique for speeding multi-core simulation. The model of the processor core and cache are replaced with functional models, to achieve speedup. A timed Petri net model is used to estimate the execution time of the processor and the memory access latencies are estimated using hit/miss information obtained from the functional model of the cache. This model can be used to predict performance of data parallel applications or multiprogramming workload on CMP platform with various cache hierarchies and shared bus interconnect. The error in estimation of the execution time of an application is within 6%. The speedup achieved ranges between an average of 2x--4x over the cycle accurate simulator.
Resumo:
The design and synthesis of agents that can abstract zinc from their [CCXX] (C=cysteine; X=cysteine/histidine) boxes by thioldisulfide exchange-having as control, the redox parities of the core sulfur ligands of the reagent and the enzyme, has been illustrated, and their efficiency demonstrated by monitoring the inhibition of the transcription of calf thymus DNA by E. coli RNA polymerase, which harbors two zinc atoms in their [CCXX] boxes of which one is exchangeable. Maximum inhibition possible with removal of the exchangeable zinc was seen with redox-sulfanilamide-glutamate composite. In sharp contrast, normal chelating agents (EDTA, phenanthroline) even in a thousand fold excess showed only marginal inhibition, thus supporting an exchange mechanism for the metal removal. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Sandalwood is an economically important aromatic tree belonging to the family Santalaceae. The trees are used mainly for their fragrant heartwood and oil that have immense potential for foreign exchange. Very little information is available on the genetic diversity in this species. Hence studies were initiated and genetic diversity estimated using RAPD markers in 51 genotypes of Santalum album procured from different geographcial regions of India and three exotic lines of S. spicatum from Australia. Eleven selected Operon primers (10mer) generated a total of 156 consistent and unambiguous amplification products ranging from 200bp to 4kb. Rare and genotype specific bands were identified which could be effectively used to distinguish the genotypes. Genetic relationships within the genotypes were evaluated by generating a dissimilarity matrix based on Ward's method (Squared Euclidean distance). The phenetic dendrogram and the Principal Component Analysis generated, separated the 51 Indian genotypes from the three Australian lines. The cluster analysis indicated that sandalwood germplasm within India constitutes a broad genetic base with values of genetic dissimilarity ranging from 15 to 91 %. A core collection of 21 selected individuals revealed the same diversity of the entire population. The results show that RAPD analysis is an efficient marker technology for estimating genetic diversity and relatedness, thereby enabling the formulation of appropriate strategies for conservation, germplasm management, and selection of diverse parents for sandalwood improvement programmes.
Resumo:
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with loci on chromosome 9q34.12 (TSC1) and chromosome 16p13.3 (TSC2). Genes for both loci have been isolated and characterized. The promoters of both genes have not been characterized so far and little is known about the regulation of these genes. This study reports the characterization of the human TSC1 promoter region for the first time. We have identified a novel alternative isoform in the 5' untranslated region (UTR) of the TSC1 gene transcript involving exon 1. Alternative isoforms in the 5' UTR of the mouse Tsc1 gene transcript involving exon I and exon 2 have also been identified. We have identified three upstream open reading frames (uORFs) in the 5' UTR of the TSC1/Tsc1 gene. A comparative study of the 5' UTR of TSC1/Tsc1 gene has revealed that there is a high degree of similarity not only in the sequence but also in the splicing pattern of both human and mouse TSC1 genes. We have used PCR methodology to isolate approximately 1.6 kb genomic DNA 5' to the TSC1 cDNA. This sequence has directed a high level of expression of luciferase activity in both HeLa and HepG2 cells. Successive 5' and 3' deletion analysis has suggested that a -587 bp region, from position +77 to -510 from the transcription start site (TSS), contains the promoter activity. Interestingly, this region contains no consensus TATA box or CAAT box. However, a 521-bp fragment surrounding the TSS exhibits the characteristics of a CpG island which overlaps with the promoter region. The identification of the TSC1 promoter region will help in designing a suitable strategy to identify mutations in this region in patients who do not show any mutations in the coding regions. It will also help to study the regulation of the TSC1 gene and its role in tumorigenesis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFPs) from multielectrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward-traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources-a transient negativity in the LFP locked to the spike (similar to 0 ms) that attenuated rapidly with distance, and a low-frequency rhythm with peak negativity similar to 25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from similar to 0 to similar to 25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low-frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity.
Resumo:
The research shown in this paper is to check whether a framework for designing: GEMS of SAPPhIRE as req-sol, developed earlier, can support in the designing of novel concepts. This is done by asking the questions: (a) Is there a relationship between the constructs of the framework and novelty? (b) If there is a relationship, what is the degree of this relationship? A hypothesis — an increase in the size and variety of ideas used while designing should enhance the variety of concepts produced, leading to an increase in the novelty of the concept space — is developed to explain the relationship between novelty and the constructs. Eight existing observational studies of designing sessions, each involving an individual designer solving a conceptual design problem by following a think aloud protocol are used for the analysis. The hypothesis is verified empirically using the observational studies. Results also show a strong correlation between novelty and the constructs of the framework; correlation value decreases as the abstraction level of the constructs reduces, signifying the importance of using constructs at higher abstraction levels especially for novelty.
Resumo:
Earlier studies have exploited statistical multiplexing of flows in the core of the Internet to reduce the buffer requirement in routers. Reducing the memory requirement of routers is important as it enables an improvement in performance and at the same time a decrease in the cost. In this paper, we observe that the links in the core of the Internet are typically over-provisioned and this can be exploited to reduce the buffering requirement in routers. The small on-chip memory of a network processor (NP) can be effectively used to buffer packets during most regimes of traffic. We propose a dynamic buffering strategy which buffers packets in the receive and transmit buffers of a NP when the memory requirement is low. When the buffer requirement increases due to bursts in the traffic, memory is allocated to packets in the off-chip DRAM. This scheme effectively mitigates the DRAM access bottleneck, as only a part of the traffic is stored in the DRAM. We build a Petri net model and evaluate the proposed scheme with core Internet like traffic. At 77% link utilization, the dynamic buffering scheme has a drop rate of just 0.65%, whereas the traditional DRAM buffering has 4.64% packet drop rate. Even with a high link utilization of 90%, which rarely happens in the core, our dynamic buffering results in a packet drop rate of only 2.17%, while supporting a throughput of 7.39 Gbps. We study the proposed scheme under different conditions to understand the provisioning of processing threads and to determine the queue length at which packets must be buffered in the DRAM. We show that the proposed dynamic buffering strategy drastically reduces the buffering requirement while still maintaining low packet drop rates.
Resumo:
Ethylene gas is burnt and the soot generated is sampled thermophoretically at different heights along the flame axis starting from a region close to the root of the flame. The morphology and crystallinity of the particle are recorded using high resolution transmission electron microscopes. The hardness of a single particle is measured using a nanoindenter. The frictional resistance and material removal of a particle are measured using an atomic force microscope. The particles present in the mid-flame region are found to have a crystalline shell. The ones at the flame root are found to be highly disordered and the ones at the flame tip and above have randomly distributed pockets of short range order. The physical state of a particle is found to relate, but not very strongly, with the mechanical and tribological properties of the particles.
Resumo:
Even though several techniques have been proposed in the literature for achieving multiclass classification using Support Vector Machine(SVM), the scalability aspect of these approaches to handle large data sets still needs much of exploration. Core Vector Machine(CVM) is a technique for scaling up a two class SVM to handle large data sets. In this paper we propose a Multiclass Core Vector Machine(MCVM). Here we formulate the multiclass SVM problem as a Quadratic Programming(QP) problem defining an SVM with vector valued output. This QP problem is then solved using the CVM technique to achieve scalability to handle large data sets. Experiments done with several large synthetic and real world data sets show that the proposed MCVM technique gives good generalization performance as that of SVM at a much lesser computational expense. Further, it is observed that MCVM scales well with the size of the data set.
Resumo:
Support Vector Clustering has gained reasonable attention from the researchers in exploratory data analysis due to firm theoretical foundation in statistical learning theory. Hard Partitioning of the data set achieved by support vector clustering may not be acceptable in real world scenarios. Rough Support Vector Clustering is an extension of Support Vector Clustering to attain a soft partitioning of the data set. But the Quadratic Programming Problem involved in Rough Support Vector Clustering makes it computationally expensive to handle large datasets. In this paper, we propose Rough Core Vector Clustering algorithm which is a computationally efficient realization of Rough Support Vector Clustering. Here Rough Support Vector Clustering problem is formulated using an approximate Minimum Enclosing Ball problem and is solved using an approximate Minimum Enclosing Ball finding algorithm. Experiments done with several Large Multi class datasets such as Forest cover type, and other Multi class datasets taken from LIBSVM page shows that the proposed strategy is efficient, finds meaningful soft cluster abstractions which provide a superior generalization performance than the SVM classifier.