913 resultados para Convergence of media
Resumo:
The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved. It has been demonstrated that a desired temperature profile can be achieved starting from any arbitrary initial temperature profile.
Resumo:
The singularity structure of the solutions of a general third-order system, with polynomial right-hand sides of degree less than or equal to two, is studied about a movable singular point, An algorithm for transforming the given third-order system to a third-order Briot-Bouquet system is presented, The dominant behavior of a solution of the given system near a movable singularity is used to construct a transformation that changes the given system directly to a third-order Briot-Bouquet system. The results of Horn for the third-order Briot-Bouquet system are exploited to give the complete form of the series solutions of the given third-order system; convergence of these series in a deleted neighborhood of the singularity is ensured, This algorithm is used to study the singularity structure of the solutions of the Lorenz system, the Rikitake system, the three-wave interaction problem, the Rabinovich system, the Lotka-Volterra system, and the May-Leonard system for different sets of parameter values. The proposed approach goes far beyond the ARS algorithm.
Resumo:
The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.
Resumo:
We consider the problem of wireless channel allocation to multiple users. A slot is given to a user with a highest metric (e.g., channel gain) in that slot. The scheduler may not know the channel states of all the users at the beginning of each slot. In this scenario opportunistic splitting is an attractive solution. However this algorithm requires that the metrics of different users form independent, identically distributed (iid) sequences with same distribution and that their distribution and number be known to the scheduler. This limits the usefulness of opportunistic splitting. In this paper we develop a parametric version of this algorithm. The optimal parameters of the algorithm are learnt online through a stochastic approximation scheme. Our algorithm does not require the metrics of different users to have the same distribution. The statistics of these metrics and the number of users can be unknown and also vary with time. Each metric sequence can be Markov. We prove the convergence of the algorithm and show its utility by scheduling the channel to maximize its throughput while satisfying some fairness and/or quality of service constraints.
Resumo:
For more than two hundred years, the world has discussed the issue of whether to continue the process of patenting or whether to do away with it. Developed countries remain polarized for various reasons but nevertheless the pro patent regime continued. The result was a huge volume of patents. The present article explains the implications of excessive volume of patents and conditions under which prior art search fails. This article highlights the importance and necessity of standardization efforts so as to bring about convergence of views on patenting.
Resumo:
Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes on a region in Euclidean space, e.g., the unit square. After deployment, the nodes self-organise into a mesh topology. In a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this paper, we analyse the performance of this approximation. We show that nodes with a certain hop distance from a fixed anchor node lie within a certain annulus with probability approach- ing unity as the number of nodes n → ∞. We take a uniform, i.i.d. deployment of n nodes on a unit square, and consider the geometric graph on these nodes with radius r(n) = c q ln n n . We show that, for a given hop distance h of a node from a fixed anchor on the unit square,the Euclidean distance lies within [(1−ǫ)(h−1)r(n), hr(n)],for ǫ > 0, with probability approaching unity as n → ∞.This result shows that it is more likely to expect a node, with hop distance h from the anchor, to lie within this an- nulus centred at the anchor location, and of width roughly r(n), rather than close to a circle whose radius is exactly proportional to h. We show that if the radius r of the ge- ometric graph is fixed, the convergence of the probability is exponentially fast. Similar results hold for a randomised lattice deployment. We provide simulation results that il- lustrate the theory, and serve to show how large n needs to be for the asymptotics to be useful.
Resumo:
A methodology termed the “filtered density function” (FDF) is developed and implemented for large eddy simulation (LES) of chemically reacting turbulent flows. In this methodology, the effects of the unresolved scalar fluctuations are taken into account by considering the probability density function (PDF) of subgrid scale (SGS) scalar quantities. A transport equation is derived for the FDF in which the effect of chemical reactions appears in a closed form. The influences of scalar mixing and convection within the subgrid are modeled. The FDF transport equation is solved numerically via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential equations (SDEs) are obtained. These solutions preserve the Itô-Gikhman nature of the SDEs. The consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance of the closures employed in the FDF transport equation are assessed by comparisons with results obtained by direct numerical simulation (DNS) and by conventional LES procedures in which the first two SGS scalar moments are obtained by a finite difference method (LES-FD). These comparative assessments are conducted by implementations of all three schemes (FDF, DNS and LES-FD) in a temporally developing mixing layer and a spatially developing planar jet under both non-reacting and reacting conditions. In non-reacting flows, the Monte Carlo solution of the FDF yields results similar to those via LES-FD. The advantage of the FDF is demonstrated by its use in reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are significantly different from those based on DNS. The FDF results show a much closer agreement with filtered DNS results. © 1998 American Institute of Physics.
Resumo:
Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein `structure prediction' problem.
Resumo:
This article considers a class of deploy and search strategies for multi-robot systems and evaluates their performance. The application framework used is deployment of a system of autonomous mobile robots equipped with required sensors in a search space to gather information. The lack of information about the search space is modelled as an uncertainty density distribution. The agents are deployed to maximise single-step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for sequential deploy and search (SDS) and combined deploy and search (CDS) strategies. Completeness results are provided for both search strategies. The deployment strategy is analysed in the presence of constraints on robot speed and limit on sensor range for the convergence of trajectories with corresponding control laws responsible for the motion of robots. SDS and CDS strategies are compared with standard greedy and random search strategies on the basis of time taken to achieve reduction in the uncertainty density below a desired level. The simulation experiments reveal several important issues related to the dependence of the relative performances of the search strategies on parameters such as the number of robots, speed of robots and their sensor range limits.
Resumo:
This brief discusses the convergence analysis of proportional navigation (PN) guidance law in the presence of delayed line-of-sight (LOS) rate information. The delay in the LOS rate is introduced by the missile guidance system that uses a low cost sensor to obtain LOS rate information by image processing techniques. A Lyapunov-like function is used to analyze the convergence of the delay differential equation (DDE) governing the evolution of the LOS rate. The time-to-go until which decreasing behaviour of the Lyapunov-like function can be guaranteed is obtained. Conditions on the delay for finite time convergence of the LOS rate are presented for the linearized engagement equation. It is observed that in the presence of line-of-sight rate delay, increasing the effective navigation constant of the PN guidance law deteriorates its performance. Numerical simulations are presented to validate the results.
Resumo:
Representatives of several Internet service providers (ISPs) have expressed their wish to see a substantial change in the pricing policies of the Internet. In particular, they would like to see content providers (CPs) pay for use of the network, given the large amount of resources they use. This would be in clear violation of the ``network neutrality'' principle that had characterized the development of the wireline Internet. Our first goal in this article is to propose and study possible ways of implementing such payments and of regulating their amount. We introduce a model that includes the users' behavior, the utilities of the ISP and of the CPs, and, the monetary flow that involves the content users, the ISP and CP, and, in pUrticular, the CP's revenues from advertisements. We consider various game models and study the resulting equilibria; they are all combinations of a noncooperative game (in which the ISPs and CPs determine how much they will charge the users) with a ``cooperative'' one on how the CP and the ISP share the payments. We include in our model a possible asymmetric weighting parameter (that varies between zero to one). We also study equilibria that arise when one of the CPs colludes with the TSP. We also study two dynamic game models as well as the convergence of prices to the equilibrium values.
Resumo:
A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, diattenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.
Resumo:
The performance of two curved beam finite element models based on coupled polynomial displacement fields is investigated for out-of-plane vibration of arches. These two-noded beam models employ curvilinear strain definitions and have three degrees of freedom per node namely, out-of-plane translation (v), out-of-plane bending rotation (theta(z)) and torsion rotation (theta(s)). The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the force-moment equilibrium equations. Numerical performance of these elements for constrained and unconstrained arches is compared with the conventional curved beam models which are based on independent polynomial fields. The formulation is shown to be free from any spurious constraints in the limit of `flexureless torsion' and `torsionless flexure' and hence devoid of flexure and torsion locking. The resulting stiffness and consistent mass matrices generated from the coupled displacement models show excellent convergence of natural frequencies in locking regimes. The accuracy of the shear flexibility added to the elements is also demonstrated. The coupled polynomial models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess `additional' integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.