898 resultados para Conformal Field Models in String Theory
Resumo:
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabasi-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q > 2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
Resumo:
Using the density matrix renormalization group, we calculated the finite-size corrections of the entanglement alpha-Renyi entropy of a single interval for several critical quantum chains. We considered models with U(1) symmetry such as the spin-1/2 XXZ and spin-1 Fateev-Zamolodchikov models, as well as models with discrete symmetries such as the Ising, the Blume-Capel, and the three-state Potts models. These corrections contain physically relevant information. Their amplitudes, which depend on the value of a, are related to the dimensions of operators in the conformal field theory governing the long-distance correlations of the critical quantum chains. The obtained results together with earlier exact and numerical ones allow us to formulate some general conjectures about the operator responsible for the leading finite-size correction of the alpha-Renyi entropies. We conjecture that the exponent of the leading finite-size correction of the alpha-Renyi entropies is p(alpha) = 2X(epsilon)/alpha for alpha > 1 and p(1) = nu, where X-epsilon denotes the dimensions of the energy operator of the model and nu = 2 for all the models.
Resumo:
A rigorous asymptotic theory for Wald residuals in generalized linear models is not yet available. The authors provide matrix formulae of order O(n(-1)), where n is the sample size, for the first two moments of these residuals. The formulae can be applied to many regression models widely used in practice. The authors suggest adjusted Wald residuals to these models with approximately zero mean and unit variance. The expressions were used to analyze a real dataset. Some simulation results indicate that the adjusted Wald residuals are better approximated by the standard normal distribution than the Wald residuals.
Resumo:
We consider the Shannon mutual information of subsystems of critical quantum chains in their ground states. Our results indicate a universal leading behavior for large subsystem sizes. Moreover, as happens with the entanglement entropy, its finite-size behavior yields the conformal anomaly c of the underlying conformal field theory governing the long-distance physics of the quantum chain. We study analytically a chain of coupled harmonic oscillators and numerically the Q-state Potts models (Q = 2, 3, and 4), the XXZ quantum chain, and the spin-1 Fateev-Zamolodchikov model. The Shannon mutual information is a quantity easily computed, and our results indicate that for relatively small lattice sizes, its finite-size behavior already detects the universality class of quantum critical behavior.
Resumo:
[EN] In this work we propose a new variational model for the consistent estimation of motion fields. The aim of this work is to develop appropriate spatio-temporal coherence models. In this sense, we propose two main contributions: a nonlinear flow constancy assumption, similar in spirit to the nonlinear brightness constancy assumption, which conveniently relates flow fields at different time instants; and a nonlinear temporal regularization scheme, which complements the spatial regularization and can cope with piecewise continuous motion fields. These contributions pose a congruent variational model since all the energy terms, except the spatial regularization, are based on nonlinear warpings of the flow field. This model is more general than its spatial counterpart, provides more accurate solutions and preserves the continuity of optical flows in time. In the experimental results, we show that the method attains better results and, in particular, it considerably improves the accuracy in the presence of large displacements.
Resumo:
In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.
Resumo:
In recent years, the econometrics literature has shown a growing interest in the study of partially identified models, in which the object of economic and statistical interest is a set rather than a point. The characterization of this set and the development of consistent estimators and inference procedures for it with desirable properties are the main goals of partial identification analysis. This review introduces the fundamental tools of the theory of random sets, which brings together elements of topology, convex geometry, and probability theory to develop a coherent mathematical framework to analyze random elements whose realizations are sets. It then elucidates how these tools have been fruitfully applied in econometrics to reach the goals of partial identification analysis.
Resumo:
We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.
Resumo:
Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W− pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1) field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z′ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.
Resumo:
Rapidly growing technical developments and working time constraints call for changes in trainee formation. In reality, trainees spend fewer hours in the hospital and face more difficulties in acquiring the required qualifications in order to work independently as a specialist. Simulation-based training is a potential solution. It offers the possibility to learn basic technical skills, repeatedly perform key steps in procedures and simulate challenging scenarios in team training. Patients are not at risk and learning curves can be shortened. Advanced learners are able to train rare complications. Senior faculty member's presence is key to assess and debrief effective simulation training. In the field of vascular access surgery, simulation models are available for open as well as endovascular procedures. In this narrative review, we describe the theory of simulation, present simulation models in vascular (access) surgery, discuss the possible benefits for patient safety and the difficulties of implementing simulation in training.
Resumo:
Despite the strong increase in observational data on extrasolar planets, the processes that led to the formation of these planets are still not well understood. However, thanks to the high number of extrasolar planets that have been discovered, it is now possible to look at the planets as a population that puts statistical constraints on theoretical formation models. A method that uses these constraints is planetary population synthesis where synthetic planetary populations are generated and compared to the actual population. The key element of the population synthesis method is a global model of planet formation and evolution. These models directly predict observable planetary properties based on properties of the natal protoplanetary disc, linking two important classes of astrophysical objects. To do so, global models build on the simplified results of many specialized models that address one specific physical mechanism. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disc (of gas and solids), those that describe one (proto)planet (its solid core, gaseous envelope and atmosphere), and finally those that describe the interactions (orbital migration and N-body interaction). We compare the approaches taken in different global models, discuss the links between specialized and global models, and identify physical processes that require improved descriptions in future work. We then shortly address important results of planetary population synthesis like the planetary mass function or the mass-radius relationship. With these statistical results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Owing to their nature as meta models, global models depend on the results of specialized models, and therefore on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that the global models will in future undergo significant modifications. Despite these limitations, global models can already now yield many testable predictions. With future global models addressing the geophysical characteristics of the synthetic planets, it should eventually become possible to make predictions about the habitability of planets based on their formation and evolution.
Resumo:
We propose a way to incorporate NTBs for the four workhorse models of the modern trade literature in computable general equilibrium models (CGEs). CGE models feature intermediate linkages and thus allow us to study global value chains (GVCs). We show that the Ethier-Krugman monopolistic competition model, the Melitz firm heterogeneity model and the Eaton and Kortum model can be defined as an Armington model with generalized marginal costs, generalized trade costs and a demand externality. As already known in the literature in both the Ethier-Krugman model and the Melitz model generalized marginal costs are a function of the amount of factor input bundles. In the Melitz model generalized marginal costs are also a function of the price of the factor input bundles. Lower factor prices raise the number of firms that can enter the market profitably (extensive margin), reducing generalized marginal costs of a representative firm. For the same reason the Melitz model features a demand externality: in a larger market more firms can enter. We implement the different models in a CGE setting with multiple sectors, intermediate linkages, non-homothetic preferences and detailed data on trade costs. We find the largest welfare effects from trade cost reductions in the Melitz model. We also employ the Melitz model to mimic changes in Non tariff Barriers (NTBs) with a fixed cost-character by analysing the effect of changes in fixed trade costs. While we work here with a model calibrated to the GTAP database, the methods developed can also be applied to CGE models based on the WIOD database.