947 resultados para Compressed pile
Resumo:
Steel is an alloy EUROFER promising for use in nuclear reactors, or in applications where the material is subjected to temperatures up to 550 ° C due to their lower creep resistance under. One way to increase this property, so that the steel work at higher temperatures it is necessary to prevent sliding of its grain boundaries. Factors that influence this slip contours are the morphology of the grains, the angle and speed of the grain boundaries. This speed can be decreased in the presence of a dispersed phase in the material, provided it is fine and homogeneously distributed. In this context, this paper presents the development of a new material metal matrix composite (MMC) which has as starting materials as stainless steel EUROFER 97, and two different kinds of tantalum carbide - TaC, one with average crystallite sizes 13.78 nm synthesized in UFRN and another with 40.66 nm supplied by Aldrich. In order to improve the mechanical properties of metal matrix was added by powder metallurgy, nano-sized particles of the two types of TaC. This paper discusses the effect of dispersion of carbides in the microstructure of sintered parts. Pure steel powders with the addition of 3% TaC UFRN and 3% TaC commercial respectively, were ground in grinding times following: a) 5 hours in the planetary mill for all post b) 8 hours of grinding in the mill Planetary only for steel TaC powders of commercial and c) 24 hours in the conventional ball mill mixing the pure steel milled for 5 hours in the planetary mill with 3% TaC commercial. Each of the resulting particulate samples were cold compacted under a uniaxial pressure of 600MPa, on a cylindrical matrix of 5 mm diameter. Subsequently, the compressed were sintered in a vacuum furnace at temperatures of 1150 to 1250 ° C with an increment of 20 ° C and 10 ° C per minute and maintained at these isotherms for 30, 60 and 120 minutes and cooled to room temperature. The distribution, size and dispersion of steel and composite particles were determined by x-ray diffraction, scanning electron microscopy followed by chemical analysis (EDS). The structures of the sintered bodies were observed by optical microscopy and scanning electron accompanied by EDS beyond the x-ray diffraction. Initial studies sintering the obtained steel EUROFER 97 a positive reply in relation to improvement of the mechanical properties independent of the processing, because it is obtained with sintered microhardness values close to and even greater than 100% of the value obtained for the HV 333.2 pure steel as received in the form of a bar
Resumo:
Carbon monoliths with high densities are studied as adsorbents for the storage of H2, CH4, and CO2 at ambient temperature and high pressures. The starting monolith A3 (produced by ATMI Co.) was activated under a CO2 flow at 1073 K, applying different activation times up to 48 h. Micropore volumes and apparent surface areas were deduced from N2 and CO2 adsorption isotherms at 77 K and 273 K, respectively. CO2 and CH4 isotherms were measured up to 3 MPa and H2 up to 20 MPa. The BET surface area of the starting monolith (941 m2/g) could be significantly increased up to 1586 m2/g, and the developed porosity is almost exclusively comprised of micropores <1 nm. Total storage amounts take into account the compressed gas in the void space of the material, in addition to the adsorbed gas. Remarkably, high total storage amounts are reached for CO2 (482 g/L), CH4 (123 g/L), and H2 (18 g/L). These values are much higher than for other sorbents with similar surface areas, due to the high density of the starting monolith and of the activated ones, for which the density decreases only slightly (from 1.0 g/cm3 to 0.8 g /cm3 upon CO2 activation). The findings reveal the suitability of high density activated carbon monoliths for gas storage application. Thus, the amounts of stored gas can be increased by more than a 70 % in the case of H2 at 20 MPa, almost 5.5 times in the case of CH4 at 3 MPa, and more than 7.5 times in the case of CO2 at 3 MPa when adsorbents are used for gas storage under the investigated conditions rather than simple compression. Furthermore, the obtained results have been recently confirmed by a scale-up study in which 2.64 kg of high density monolith adsorbent was filled a tank cylinder of 2.5 L (Carbon, 76, 2014, 123).
Resumo:
Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner
Resumo:
Material digital de DVD
Resumo:
57 hojas : ilustraciones, fotografías.
Resumo:
The Mine Improvement and New Emergency Response (MINER) Act of 2006 implemented new regulations in the underground coal mining industry that allow for the certification of non-compressed gas equipment for respiratory protection in underground coal mines. NASA’s Kennedy Space Center (KSC) Biomedical Research and Engineering Laboratory (BRL) is investigating the potential to expand cryogenic air supply systems into the mining and general industries. These investigations have, so far, resulted in four separate comparison and hardware development programs. The Propellant Handlers Ensemble (PHE) and Level “A” Ensemble Comparison (LAE): This study compared worker thermal stress while using the industry standard Level A hazardous material handling ensemble as opposed to using the similarly protective Propellant Handler’s Ensemble (PHE) that utilizes a cryogenic air supply pack, known as an Environmental Control Unit (ECU) as opposed to the compressed air Self Contained Breathing Apparatus (SCBA) used in the LAE. The research found that, in a 102°F environment, test subjects experienced significantly decreased body temperature increases, significantly decreased heart rate increases, and decreased sweat loss while performing a standard work routine while using the PHE, compared to the same test subjects performing the same routine while using the LAE. The Cryogenic Refuge Alternative Supply System (CryoRASS) project: The MINER Act of 2006 requires the operators of underground coal mines to provide refuge alternatives that can provide a safe atmosphere for workers for up to 96 hours in the event of a mine emergency. The CryoRASS project retrofitted an existing refuge chamber with a liquid air supply instead of the standard compressed air supply system and performed a 96 hour test. The CryoRASS system demonstrated that it provided a larger air supply in a significantly smaller footprint area, provided humidity and temperature control, and maintained acceptable oxygen and carbon dioxide levels in the chamber for the required amount of time. SCBA and Mine Rescue System (CryoBA/CryoASFS) Another requirement of the MINER Act is that additional emergency breathing equipment must be staged along evacuation routes to supplement the Self Contained/Self Rescue (SCSR) devices that are now required. The BRL has developed an SCBA known as the Cryogenic Breathing Apparatus (CryoBA), that has the ability to provide 2 hours of breathing air, a refill capability, and some cooling for the user. Cryogenic Air Storage and Filling Stations (CryoASFS) would be positioned in critical areas to extend evacuation time. The CryoASFS stations have a significantly smaller footprint and larger air storage capacity to similar compressed air systems. The CryoBA pack is currently undergoing NIOSH certification testing. Technical challenges associated with liquid breathing air systems: Research done by the BRL has also addressed three major technical challenges involved with the widespread use of liquid breathing air. The BRL developed a storage Dewar fitted with a Cryorefrigerator that has stored liquid air for four months with no appreciable oxygen enrichment due to differential evaporation. Testing of liquid breathing air was material and time intensive. A BRL contract developed a system that only required 1 liter of air and five minutes of time compared to the 10 liters of air and 75 minutes of time required by the old method. The BRL also developed a simple and cost effective method of manufacturing liquid air that joins a liquid oxygen tanker with a liquid nitrogen tanker through an orifice controlled “Y” fitting, mixing the two components, and depositing the mixed breathing air in a separate tanker.
Resumo:
We report a two-stage diode-pumped Er-doped fiber amplifier operating at the wavelength of 1550 nm at the repetition rate of 10-100 kHz with an average output power of up to 10 W. The first stage comprising Er-doped fiber was core-pumped at the wavelength of 1480 nm, whereas the second stage comprising double-clad Er/Yb-doped fiber was clad-pumped at the wavelength of 975 nm. The estimated peak power for the 0.4-nm full-width at half-maximum laser emission at the wavelength of 1550 nm exceeded 4-kW level. The initial 100-ns seed diode laser pulse was compressed to 3.5 ns as a result of the 34-dB total amplification. The observed 30-fold efficient pulse compression reveals a promising new nonlinear optical technique for the generation of high power short pulses for applications in eye-safe ranging and micromachining.
Resumo:
To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultrymanure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.
Resumo:
Recent research has found that even preschoolers give more resources to others who have previously given resources to them, but the psychological bases of this reciprocity are unknown. In our study, a puppet distributed resources between herself and a child by taking some from a pile in front of the child or else by giving some from a pile in front of herself. Although the resulting distributions were identical, three- and five-year-olds reciprocated less generously when the puppet had taken rather than given resources. This suggests that children’s judgments about resource distribution are more about the social intentions of the distributor and the social framing of the distributional act than about the amount of resources obtained. In order to rule out that the differences in the children’s reciprocal behavior were merely due to experiencing gains and losses, we conducted a follow-up study. Here, three- and-five year olds won or lost resources in a lottery draw and could then freely give or take resources to/from a puppet, respectively. In this study, they did not respond differently after winning vs. losing resources.
Resumo:
After several inquiries from the trucking industry, the Department of Revenue established the conversion factors for compressed natural gas and liquefied natural gas in August, 2014. This advisory opinion now represents the Department’s official position concerning these conversion factors. The Department also recently established the conversion factor for liquefied propane gas. This advisory now represents the Department’s official position concerning this conversion factor.
Resumo:
QUICK CONCRETE es un emprendimiento el cual se planteó como una empresa prestadora de servicios en el sector de la construcción en la ciudad de Ibagué, Colombia. Con ayuda de empresas ya reconocidas a nivel regional como lo son: la distribuidora de materiales y ferretería La Española, A&C y la ladrillera Ladrillos Roma. Se espera impactar en el mercado con un método diferente y un precio competitivo de servicio. El mayor impulso de la construcción puede estar asociado a una mayor demanda de vivienda por parte de ciudadanos bogotanos que ven en Ibagué una posibilidad rentable para invertir en vivienda, así como también el crecimiento del comercio que requiere la construcción de centros comerciales y el programa de viviendas de interés social del Gobierno que benefició a Ibague. Sin embargo, este es una actividad bastante cíclica y con una alta rotación de trabajadores.
Resumo:
La expansión urbana mediante asentamientos de origen informal ha ido aumentado en los últimos años debido al déficit en la oferta de vivienda formal, el costo del suelo urbano y factores económicos, sociales y culturales. Estos asentamientos no cuentan con infraestructura básica y los terrenos que generalmente son invadidos se encuentran en zonas de riesgo y no ofrecen las condiciones físicas y habitacionales adecuadas para el habitar de las personas. El distrito a través del Programa de Mejoramiento Integral de Barrios (PMIB) busca intervenir sobre los aspectos críticos en cada barrio, habilitar la infraestructura básica que permita su integración a la ciudad y mejorar la calidad de vida de los habitantes. Este proceso parte de delimitar las zonas críticas y definir las intervenciones físicas, sociales y ambientales que deben ser llevadas a cabo por diferentes entidades distritales. En este estudio se hace un análisis de las intervenciones que se han llevado a cabo en la Área Prioritaria de Intervención (API) El Tesoro, para analizar cuales intervenciones llevadas a cabo han sido exitosas y cuales requieren de ajustes para lograr un mejor impacto. Se encontró que estas intervenciones no han sido suficientes para mejorar las condiciones habitacionales de las personas, razón por lo cual es necesario revisar la política y formas de intervención.
Resumo:
La economía mundial cambia a un ritmo vertiginoso y exponencial gracias a la rápida transformación de la tecnología. Diferentes dinámicas como el crecimiento en cobertura del internet; la creciente facilidad de obtención de una tarjeta de crédito; la popularización del uso de smartphones; y el crecimiento en uso del comercio electrónico; han dado cabida a la aparición de nuevos tipos de negocio, como el de servicios electrónicos y aplicaciones, que hace algunas décadas atrás eran inviables. Teniendo en cuenta estos cambios, el presente documento plantea tres diferentes modelos de aplicación para smartphones, se hace un análisis detallado de la viabilidad para cada uno para identificar así el que cuenta con mayores probabilidades de éxito. Finalmente se profundiza en este con un análisis financiero y de mercadotecnia para así hacer las respectivas correcciones al modelo inicial y obtener como resultado la versión más viable del modelo seleccionado.
Resumo:
El departamento de mercadeo y ventas es fundamental en una empresa debido a que es el encargado de desarrollar e implementar estrategias que satisfagan las necesidades y requerimientos del cliente. Es aquí donde más se puede ver reflejado el aumento de las ventas de la empresa. El servicio al cliente, la relación con el mismo y el acompañamiento, es un tema muy importante a tratar, tanto para atraer a nuevos clientes como también para conservar a los clientes actuales. Este trabajo se desarrolló con base en la problemática de la creciente pérdida de clientes de la empresa Leader Ltda., y tiene como objetivo diseñar y crear un plan de mercadeo y ventas para la misma. Por medio de un estudio no experimental, descriptivo e interpretativo se enfocó en diferentes análisis internos y externos de la compañía para poder desarrollar un plan de acción que se pueda implementar en la compañía.
Resumo:
In Angola, the construction made of raw earth is a cultural heritage widely used by low income households, representing over 80% of the population [1, 3]. In Huila province is evident construction in raw earth in a large scale, either in urban or in periurban and rural areas. The construction methods follow the ancestral standards, distributed throughout the region of Huila, being built by the several ethnic groups. Among the construction techniques in earth, stand out: the adobe, wattle-and-daub and more recently on CEB (Compressed Earth Block). The type of soil used to make the adobes is mainly silty-clayed sand [1]. The most applied materials are: rods, reeds, wood, grass, straw, soil and stone, almost with the same characteristics [2]. The manufacture of adobe, consists essentially in mixing clay and grass (plant fibers), then put the mixture inside a wooden mold, having a size of 42 cm long and 18 cm high and taking three to four days to dry and be applied in housing construction. The application of these materials makes the construction less expensive because they are collected, transformed and applied by the owner himself of housing without any project, based only on the result of the practice and experience acquired from their ancestors. They are simple constructions, presenting a typology of grouped and isolated single-family housing, ranging between 2 and 3 bedrooms [2]. The construction techniques used in such small housings have positive environmental aspects, both as regards the materials employed, such as the manner in which the constructions are raised, showing special concerns for the quality improvement of them, as regards the resistance, durability and comfort [4].