963 resultados para Comparative studies of countries
Resumo:
This thesis summarizes studies of a class of white dwarfs (WDs) called DQ WDs. White dwarfs are the remnants of ordinary stars like our Sun that have run out of nuclear fuel. WDs are classified according to the composition of their atmosphere and DQ WDs have an atmosphere made of helium and carbon. The carbon comes in either atomic or molecular form and in some cases the strong spectral absorption features cover the entire optical wavelength region. The research presented here utilizes spectropolarimetry, which is an observational technique that combines spectroscopy and polarization. Separately these allow to study the composition of a target and the inhomogeneous distribution of matter in the target. Put together they form a powerful tool to probe the physical properties in the atmosphere of a star. It is espacially good for detecting magnetic fields. The papers in this thesis describe efforts to do a survey of DQ white dwarfs with spectropolarimetry in order to search for magnetic fields in them. Paper I describes the discovery of a new magnetic cool DQ white dwarf, GJ841B. Initial modeling of molecular features on DQ WDs showed inconsistencies with observations. The first possible solution to this problem was stellar spots on these WDs. To investigate the matter, two DQ WDs were monitored for photometric variability that could arise from the presence of such spots. Paper II summarizes this short campaign and reports the negative results. Paper III reports observations of the rest of the objects in our survey. The paper includes the discovery of polarization from another cool DQ white dwarf, bringing the total of known magnetic cool DQs to three. Unfortunately the model used in this thesis cannot, in its present state, be used to model these objects nor are the observations of high enough spectroscopic resolution to do so.
Resumo:
Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.
Resumo:
Dialypetalanthus fuscescens is an Amazonian endemic species with problematic taxonomic position. This neotropical rainforest tree belongs to the monospecific Dialypetalanthaceae. In the present work, we analysed the leaf cell-wall polysaccharide composition of Dialypetalanthus fuscescens and compared it to that of Bathysa meridionalis (Rubiaceae-Cinchonoideae). Glycosyl composition and glycosyl-linkage analysis indicated that both species have similar cell wall composition. Arabinogalactans were the major component of the pectic polysaccharides and xylans, although being reported in minor amounts in dicots, were found to be the predominant hemicellulosic polysaccharide in cell walls of both species. These findings are in agreement with previous data on cell wall composition reported for Rubiaceae and corroborate the current suggestion of the possible link between this family and Dialypetalanthaceae.
Resumo:
The suitability of quantitative variables for phenological studies was evaluated in a population of the brown seaweed Sargassum vulgare from "Praia das Gordas", Angra dos Reis, Ilha Grande Bay, state of Rio de Janeiro. From June 1998 to May 1999, twenty adult individuals were randomly sampled at bimonthly intervals. Fifteen variables related to the vegetative and reproductive development of perennial and non-perennial parts of the individuals were quantified. Variables related to the non-perennial parts were more useful than those related to the perennial parts, because they showed a clear variation over the year. Vegetative development declined from June to October, and increased from October to February, when maximum median values of thallus height, total dry mass, non-perennial parts dry mass, and degree of branching were reached. This pattern coincided with those described for other species of the genus from warm temperate regions. Thallus height, a usually employed character in other phenological studies of Sargassum, showed lower coefficient of variation (53.2%) than those related to dry mass (72.0% to 182.3%). Peak of reproduction occurred from June to August, according to the following variables: fertile primary lateral branches number and dry mass and receptacles dry mass. Non-perennial parts dry mass and receptacles dry mass are recommended for phenological studies of S. vulgare. This methodological procedure avoids the sampling of the whole individual and warrants its regeneration from the perennial parts.
Resumo:
A decade of studies on long-term habituation (LTH) in the crab Chasmagnathus is reviewed. Upon sudden presentation of a passing object overhead, the crab reacts with an escape response that habituates promptly and for at least five days. LTH proved to be an instance of associative memory and showed context, stimulus frequency and circadian phase specificity. A strong training protocol (STP) (³15 trials, intertrial interval (ITI) of 171 s) invariably yielded LTH, while a weak training protocol (WTP) (£10 trials, ITI = 171 s) invariably failed. STP was used with a presumably amnestic agent and WTP with a presumably hypermnestic agent. Remarkably, systemic administration of low doses was effective, which is likely to be due to the lack of an endothelial blood-brain barrier. LTH was blocked by inhibitors of protein and RNA synthesis, enhanced by protein kinase A (PKA) activators and reduced by PKA inhibitors, facilitated by angiotensin II and IV and disrupted by saralasin. The presence of angiotensins and related compounds in the crab brain was demonstrated. Diverse results suggest that LTH includes two components: an initial memory produced by spaced training and mainly expressed at an initial phase of testing, and a retraining memory produced by massed training and expressed at a later phase of testing (retraining). The initial memory would be associative, context specific and sensitive to cycloheximide, while the retraining memory would be nonassociative, context independent and insensitive to cycloheximide
Resumo:
In the present study we evaluated the binding of the radiopharmaceuticals sodium pertechnetate (Na 99mTcO4), methylenediphosphonic acid (99mTc-MDP) and glucoheptonate acid (99mTc-GHA) to blood elements using centrifugation and radioautographic techniques. Heparinized blood was incubated with the labelled compounds for 0, 1, 2, 3, 4, 6 and 24 h. Plasma (P) and blood cells (BC) were isolated and precipitated with 5% trichloroacetic acid (TCA), and soluble (SF) and insoluble fractions (IF) were separated. Blood samples were prepared (0 and 24 h) and coated with LM-1 radioautographic emulsions and percent radioactivity (%rad) in P and BC was determined. The binding of Na 99mTcO4 (%rad) to P was 61.2% (0 h) and 46.0% (24 h), and radioautography showed 63.7% (0 h) and 43.3% (24 h). The binding to BC was 38.8% (0 h) and 54.0% (24 h), and radioautography showed 36.3% (0 h) and 56.7% (24 h). 99mTc-MDP study presented 91.1% (0 h) to P and 87.2% (24 h), and radioautography showed 67.9% (0 h) and 67.4% (24 h). The binding to BC was 8.9% (0 h) and 12.8% (24 h), and radioautography showed 32.1% (0 h) and 32.6% (24 h). 99mTc-GHA study was 90.1% (0 h) to P and 79.9% (24 h), and radioautography showed 67.2% (0 h) and 60.1% (24 h). The binding to BC was 9.9% (0 h) and 20.1% (24 h), and radioautography showed 32.8% (0 h) and 39.9% (24 h). The comparison of the obtained results suggests that the binding to plasma and blood cells in the two techniques used (radioautography and centrifugation) is qualitatively in accordance
Resumo:
In the present study, using noise-free simulated signals, we performed a comparative examination of several preprocessing techniques that are used to transform the cardiac event series in a regularly sampled time series, appropriate for spectral analysis of heart rhythm variability (HRV). First, a group of noise-free simulated point event series, which represents a time series of heartbeats, was generated by an integral pulse frequency modulation model. In order to evaluate the performance of the preprocessing methods, the differences between the spectra of the preprocessed simulated signals and the true spectrum (spectrum of the model input modulating signals) were surveyed by visual analysis and by contrasting merit indices. It is desired that estimated spectra match the true spectrum as close as possible, showing a minimum of harmonic components and other artifacts. The merit indices proposed to quantify these mismatches were the leakage rate, defined as a measure of leakage components (located outside some narrow windows centered at frequencies of model input modulating signals) with respect to the whole spectral components, and the numbers of leakage components with amplitudes greater than 1%, 5% and 10% of the total spectral components. Our data, obtained from a noise-free simulation, indicate that the utilization of heart rate values instead of heart period values in the derivation of signals representative of heart rhythm results in more accurate spectra. Furthermore, our data support the efficiency of the widely used preprocessing technique based on the convolution of inverse interval function values with a rectangular window, and suggest the preprocessing technique based on a cubic polynomial interpolation of inverse interval function values and succeeding spectral analysis as another efficient and fast method for the analysis of HRV signals
Resumo:
The carotid bodies of rats made chronically hypoxic by breathing 12% O2 in a normobaric chamber (inspired PO2 91 mmHg) were compared with those of controls. Serial 5-µm sections of the organs were examined using an interactive image analysis system. The total volume of the carotid bodies was increased by 64%. The total vascular volume rose by 103% and was likely due to an increase in size of the large vessels (>12 µm lumen diameter) because the small vessel (5-12 µm lumen diameter) volume did not increase significantly while the small vessel density tended to decrease. The extravascular volume was increased by 57%. Expressed as a percentage of the total volume of the organ, the total vascular volume did not change, but the small vessel volume was significantly decreased from 7.83 to 6.06%. The large vessel volume must therefore have been increased. The proportion occupied by the extravascular volume was virtually unchanged (84 vs 82%). In accordance with these findings, the small vessel endothelial surface area per unit carotid body volume was diminished from 95.2 to 76.5 mm-1, while the extravascular area per small vessel was increased from 493 to 641 µm2 or by 30%. In conclusion, the enlargement of the carotid body in chronic hypoxia is most likely due to an increase in total vascular volume, mainly involving the "large" vessels, and to an increase in extravascular volume. This is in contrast to our previously published findings indicating that in the spontaneous insulin-dependent diabetic rat the enlargement of the carotid body is due solely to an increase in extravascular volume.
Resumo:
We describe the ultrastructural abnormalities of the small bowel surface in 16 infants with persistent diarrhea. The age range of the patients was 2 to 10 months, mean 4.8 months. All patients had diarrhea lasting 14 or more days. Bacterial overgrowth of the colonic microflora in the jejunal secretion, at concentrations above 10(4) colonies/ml, was present in 11 (68.7%) patients. The stool culture was positive for an enteropathogenic agent in 8 (50.0%) patients: for EPEC O111 in 2, EPEC O119 in 1, EAEC in 1, and Shigella flexneri in 1; mixed infections due to EPEC O111 and EAEC in 1 patient, EPEC O119 and EAEC in 1 and EPEC O55, EPEC O111, EAEC and Shigella sonnei in 1. Morphological abnormalities in the small bowel mucosa were observed in all 16 patients, varying in intensity from moderate 9 (56.3%) to severe 7 (43.7%). The scanning electron microscopic study of small bowel biopsies from these subjects showed several surface abnormalities. At low magnification (100X) most of the villi showed mild to moderate stunting, but on several occasions there was subtotal villus atrophy. At higher magnification (7,500X) photomicrographs showed derangement of the enterocytes; on several occasions the cell borders were not clearly defined and very often microvilli were decreased in number and height; in some areas there was a total disappearance of the microvilli. In half of the patients a mucus-fibrinoid pseudomembrane was seen partially coating the enterocytes, a finding that provides additional information on the pathophysiology of persistent diarrhea.
Resumo:
In the present study the age-related changes of the striated muscle elastic fiber system were investigated in the diaphragm and rectus abdominis muscles of 1-, 4-, 8- and 18-month-old rats. The activation patterns of these muscles differ in that the diaphragm is regularly mobilized tens of times every minute during the entire life of the animal whereas the rectus abdominis, although mobilized in respiration, is much less and more irregularly activated. The elastic fibers were stained by the Verhoeff technique for mature elastic fibers. Weigert stain was used to stain mature and elaunin elastic fibers, and Weigert-oxone to stain mature, elaunin and oxytalan elastic fibers. The density of mature and elaunin elastic fibers showed a progressive increase with age, whereas the amount of oxytalan elastic fibers decreased in both diaphragm and rectus abdominis muscles and their muscular fascias. These age-related quantitative and structural changes of the elastic fiber system may reduce the viscoelastic properties of the diaphragm and rectus abdominis muscles, which may compromise the transmission of tensile muscle strength to the tendons and may affect maximum total strength.
Resumo:
Defects in semiconductor crystals and at their interfaces usually impair the properties and the performance of devices. These defects include, for example, vacancies (i.e., missing crystal atoms), interstitials (i.e., extra atoms between the host crystal sites), and impurities such as oxygen atoms. The defects can decrease (i) the rate of the radiative electron transition from the conduction band to the valence band, (ii) the amount of charge carriers, and (iii) the mobility of the electrons in the conduction band. It is a common situation that the presence of crystal defects can be readily concluded as a decrease in the luminescence intensity or in the current flow for example. However, the identification of the harmful defects is not straightforward at all because it is challenging to characterize local defects with atomic resolution and identification. Such atomic-scale knowledge is however essential to find methods for reducing the amount of defects in energy-efficient semiconductor devices. The defects formed in thin interface layers of semiconductors are particularly difficult to characterize due to their buried and amorphous structures. Characterization methods which are sensitive to defects often require well-defined samples with long range order. Photoelectron spectroscopy (PES) combined with photoluminescence (PL) or electrical measurements is a potential approach to elucidate the structure and defects of the interface. It is essential to combine the PES with complementary measurements of similar samples to relate the PES changes to changes in the interface defect density. Understanding of the nature of defects related to III-V materials is relevant to developing for example field-effect transistors which include a III-V channel, but research is still far from complete. In this thesis, PES measurements are utilized in studies of various III-V compound semiconductor materials. PES is combined with photoluminescence measurements to study the SiO2/GaAs, SiNx/GaAs and BaO/GaAs interfaces. Also the formation of novel materials InN and photoluminescent GaAs nanoparticles are studied. Finally, the formation of Ga interstitial defects in GaAsN is elucidated by combining calculational results with PES measurements.
Resumo:
In this thesis, stepwise titration with hydrochloric acid was used to obtain chemical reactivities and dissolution rates of ground limestones and dolostones of varying geological backgrounds (sedimentary, metamorphic or magmatic). Two different ways of conducting the calculations were used: 1) a first order mathematical model was used to calculate extrapolated initial reactivities (and dissolution rates) at pH 4, and 2) a second order mathematical model was used to acquire integrated mean specific chemical reaction constants (and dissolution rates) at pH 5. The calculations of the reactivities and dissolution rates were based on rate of change of pH and particle size distributions of the sample powders obtained by laser diffraction. The initial dissolution rates at pH 4 were repeatedly higher than previously reported literature values, whereas the dissolution rates at pH 5 were consistent with former observations. Reactivities and dissolution rates varied substantially for dolostones, whereas for limestones and calcareous rocks, the variation can be primarily explained by relatively large sample standard deviations. A list of the dolostone samples in a decreasing order of initial reactivity at pH 4 is: 1) metamorphic dolostones with calcite/dolomite ratio higher than about 6% 2) sedimentary dolostones without calcite 3) metamorphic dolostones with calcite/dolomite ratio lower than about 6% The reactivities and dissolution rates were accompanied by a wide range of experimental techniques to characterise the samples, to reveal how different rocks changed during the dissolution process, and to find out which factors had an influence on their chemical reactivities. An emphasis was put on chemical and morphological changes taking place at the surfaces of the particles via X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Supporting chemical information was obtained with X-Ray Fluorescence (XRF) measurements of the samples, and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) measurements of the solutions used in the reactivity experiments. Information on mineral (modal) compositions and their occurrence was provided by X-Ray Diffraction (XRD), Energy Dispersive X-ray analysis (EDX) and studying thin sections with a petrographic microscope. BET (Brunauer, Emmet, Teller) surface areas were determined from nitrogen physisorption data. Factors increasing chemical reactivity of dolostones and calcareous rocks were found to be sedimentary origin, higher calcite concentration and smaller quartz concentration. Also, it is assumed that finer grain size and larger BET surface areas increase the reactivity although no certain correlation was found in this thesis. Atomic concentrations did not correlate with the reactivities. Sedimentary dolostones, unlike metamorphic ones, were found to have porous surface structures after dissolution. In addition, conventional (XPS) and synchrotron based (HRXPS) X-ray Photoelectron Spectroscopy were used to study bonding environments on calcite and dolomite surfaces. Both samples are insulators, which is why neutralisation measures such as electron flood gun and a conductive mask were used. Surface core level shifts of 0.7 ± 0.1 eV for Ca 2p spectrum of calcite and 0.75 ± 0.05 eV for Mg 2p and Ca 3s spectra of dolomite were obtained. Some satellite features of Ca 2p, C 1s and O 1s spectra have been suggested to be bulk plasmons. The origin of carbide bonds was suggested to be beam assisted interaction with hydrocarbons found on the surface. The results presented in this thesis are of particular importance for choosing raw materials for wet Flue Gas Desulphurisation (FGD) and construction industry. Wet FGD benefits from high reactivity, whereas construction industry can take advantage of slow reactivity of carbonate rocks often used in the facades of fine buildings. Information on chemical bonding environments may help to create more accurate models for water-rock interactions of carbonates.
Resumo:
The photophysical properties of zinc phthalocyanine (ZnPC) and chloroaluminum phthalocyanine (AlPHCl) incorporated into liposomes of dimyristoyl phosphatidylcholine in the presence and absence of additives such as cholesterol or cardiolipin were studied by time-resolved fluorescence, laser flash photolysis and steady-state techniques. The absorbance of the drugs changed linearly with drug concentration, at least up to 5.0 µM in homogeneous and heterogeneous media, indicating that aggregation did not occur in these media within this concentration range. The incorporation of the drugs into liposomes increases the dimerization constant by one order of magnitude (for ZnPC, 3.6 x 10(4) to 1.0 x 10(5) M-1 and for AlPHCl, 3.7 x 10(4) to 1.5 x 10(5) M-1), but this feature dose does not rule out the use of this carrier, since the incorporation of these hydrophobic drugs into liposomes permits their systemic administration. Probe location in biological membranes and predominant positions of the phthalocyanines in liposomes were inferred on the basis of their fluorescence and triplet state properties. Both phthalocyanines are preferentially distributed in the internal regions of the liposome bilayer. The additives affect the distribution of these drugs within the liposomes, a fact that controls their delivery when both are used in a biological medium, retarding their release. The addition of the additives to the liposomes increases the internalization of phthalocyanines. The interaction of the drugs with a plasma protein, bovine serum albumin, was examined quantitatively by the fluorescence technique. The results show that when the drugs were incorporated into small unilamellar liposomes, the association with albumin was enhanced when compared with organic media, a fact that should increase the selectivity of tumor targeting by these phthalocyanines (for ZnPC, 0.71 x 10(6) to 1.30 x 10(7) M-1 and for AlPHCl, 4.86 x 10(7) to 3.10 x 10(8) M-1).
Resumo:
The cosmological standard view is based on the assumptions of homogeneity, isotropy and general relativistic gravitational interaction. These alone are not sufficient for describing the current cosmological observations of accelerated expansion of space. Although general relativity is extremely accurately tested to describe the local gravitational phenomena, there is a strong demand for modifying either the energy content of the universe or the gravitational interaction itself to account for the accelerated expansion. By adding a non-luminous matter component and a constant energy component with negative pressure, the observations can be explained with general relativity. Gravitation, cosmological models and their observational phenomenology are discussed in this thesis. Several classes of dark energy models that are motivated by theories outside the standard formulation of physics were studied with emphasis on the observational interpretation. All the cosmological models that seek to explain the cosmological observations, must also conform to the local phenomena. This poses stringent conditions for the physically viable cosmological models. Predictions from a supergravity quintessence model was compared to Supernova 1a data and several metric gravity models were studied with local experimental results. Polytropic stellar configurations of solar, white dwarf and neutron stars were numerically studied with modified gravity models. The main interest was to study the spacetime around the stars. The results shed light on the viability of the studied cosmological models.