989 resultados para Cobalt oxide
Resumo:
In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped–clamped beam nanowire resonators.
Resumo:
With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu 2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. © 2011 Elsevier B.V. All rights reserved.
Resumo:
PDMS based imprinting is firstly developed for patterning of rGO on a large area. High quality stripe and square shaped rGO patterns are obtained and the electrical properties of the rGO film can be adjusted by the concentration of GO suspension. The arrays of rGO electronics are fabricated from the patterned film by a simple shadow mask method. Gas sensors, which are based on these rGO electronics, show high sensitivity and recyclable usage in sensing NH 3. © 2012 The Royal Society of Chemistry.
Resumo:
Here we report on the successful low-temperature growth of zinc oxide nanowires (ZnONWs) on silicon-on-insulator (SOI) CMOS micro-hotplates and their response, at different operating temperatures, to hydrogen in air. The SOI micro-hotplates were fabricated in a commercial CMOS foundry followed by a deep reactive ion etch (DRIE) in a MEMS foundry to form ultra-low power membranes. The micro-hotplates comprise p+ silicon micro-heaters and interdigitated metal electrodes (measuring the change in resistance of the gas sensitive nanomaterial). The ZnONWs were grown as a post-CMOS process onto the hotplates using a CMOS friendly hydrothermal method. The ZnONWs showed a good response to 500 to 5000 ppm of hydrogen in air. We believe that the integration of ZnONWs with a MEMS platform results in a low power, low cost, hydrogen sensor that would be suitable for handheld battery-operated gas sensors. © 2011 Published by Elsevier Ltd.