1000 resultados para Cibicidoides mundulus, d13C


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyzed the oxygen and carbon isotopic composition of planktonic and benthic foraminifers picked from 13 late Eocene to late Oligocene samples from DSDP Site 540 (23°49.73'N, 84°22.25'W, 2926 m water depth) from the Gulf of Mexico. An enrichment occurs in 18O of about 0.5 to 0.8 per mil in both benthic foraminifers and surface-dwelling planktonic foraminifers between the latest Eocene and early Oligocene. This early Oligocene maximum is followed by lower 18O values. A 1.2 per mil d13C decrease in both benthic and planktonic foraminiferal data occurs from the late Eocene to the late Oligocene. There is a correspondence of the 13C signal to deep-sea records; however, the amplitude of this change is greater than previously seen in deep-sea cores, possibly as a result of proximity to terrestrial sources of carbon. The covarying isotopic changes in both benthic and planktonic foraminifers suggest global causes, such as ice volume increases and increased terrestrial carbon input to the ocean. However, during the latter part of the record (early-late Oligocene), the increases in the benthic 18O without accompanying increases observed with planktonic foraminifers suggest that changes in only one part of the system occurred; one potential explanation being a decrease in bottom-water temperatures without concomitant changes in the surface waters. The 18O differences between species of planktonic foraminifers and the difference between planktonic and benthic 18O data indicate that diagenesis problems are minimal. These preliminary results are encouraging given that these cores are partially lithified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the growing pressure of eutrophication in tropical regions, the Mauritian shelf provides a natural situation to understand the variability in mesotrophic assemblages. Site-specific dynamics occur throughout the 1200 m depth gradient. The shallow assemblages divide into three types of warm-water mesotrophic foraminiferal assemblages, which is not only a consequence of high primary productivity restricting light to the benthos but due to low pore water oxygenation, shelf geomorphology, and sediment partitioning. In the intermediate depth (approx. 500 m), the increase in foraminiferal diversity is due to the cold-water coral habitat providing a greater range of micro niches. Planktonic species characterise the lower bathyal zone, which emphasizes the reduced benthic carbonate production at depth. Although, due to the strong hydrodynamics within the Golf, planktonic species occur in notable abundances through out the whole depth gradient. Overall, this study can easily be compared to other tropical marine settings investigating the long-term effects of tropical eutrophication and the biogeographic distribution of carbonate producing organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The glacial to interglacial delta13C records of the benthic foraminifera Cibicidoides wuellerstorfi and the Uvigerina peregrina group from deep-sea cores cannot be adjusted by a generally valid constant. The delta13C values of the U. peregrina group largely correlate with the accumulation rates of organic carbon, suggesting a local "habitat effect"; those of C. wuellerstorfi vary independently with respect to the carbon flux and record fluctuations in the delta13C of the ambient bottom water isotopic composition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated Oligocene and early Miocene benthic foraminiferal faunas (> 105 µm in size) from Ocean Drilling Program (Leg 199) Site 1218 (4826 m water depth and ~3300 to ~4000 m paleo-water depth) and Site 1219 (5063 m water depth and ~4200 to ~4400 m paleo-water depth) to understand the response of abyssal benthic foraminifera to mid-Oligocene glacial events in the eastern Equatorial Pacific Ocean. Two principal factor assemblages were recognized. The Factor 1 assemblage (common Nuttallides umbonifer) is related to either an influx of the Southern Component Water (SCW), possibly carbonate undersaturated, or a decrease in seasonality of the food supply from the surface ocean. The Factor 2 assemblage is characterized by typical deep-sea taxa living under variable trophic conditions, possibly with a seasonal component in food supply. The occurrence of abyssal benthic foraminifera faunas during the mid-Oligocene depends on either the effect of SCW or the seasonality of food resources. The Factor 1 assemblage was most common near 76Ol-C11r, 73Ol-C10rn and 67Ol-C9n (ca. 30.2, 29.1 and 26.8 Ma respectively by Pälike et al. (2006, doi:10.1126/science.1133822)). This indicates that the effect of SCW increased or the seasonal input of food from the surface ocean to benthic environments was weakened close to these glacial events. In contrast, the huge export flux of small biogenic carbonate particles close to these glacial events might be responsible for carbonate-rich sediments buffering carbonate undersaturation. Changes in deep-water masses or the periodicity of food supply from the surface ocean and variation in surface carbonate production affected by orbital forcing had an impact on the mid-Oligocene faunas of abyssal benthic foraminifera around the intervals of glacial events in the eastern Equatorial Pacific Ocean. The Factor 1 assemblage decreased sharply at ? 30 Ma (29.8 Ma by Pälike et al. (2006), 30.0 Ma by CK95) and returned to dominance after ? 29 Ma (28.6 Ma by Pälike et al. (2006), 28.8 Ma by CK95). It is likely that the effect of SCW (possibly carbonate undersaturated) has intensified since the late Oligocene. The faunal transition of benthic foraminifera in the eastern Equatorial Pacific Ocean at ~29 Ma might be attributable to the influence of Northern Component Water (NCW) input to the Southern Ocean and the subsequent formation of SCW at about that time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A multiproxy data set of an AMS radiocarbon dated 46 cm long sediment core from the continental margin off western Svalbard reveals multidecadal climatic variability during the past two millennia. Investigation of planktic and benthic stable isotopes, planktic foraminiferal fauna, and lithogenic parameters aims to unveil the Atlantic Water advection to the eastern Fram Strait by intensity, temperatures, and salinities. Atlantic Water has been continuously present at the site over the last 2,000 years. Superimposed on the increase in sea ice/icebergs, a strengthened intensity of Atlantic Water inflow and seasonal ice-free conditions were detected at ~ 1000 to 1200 AD, during the well-known Medieval Climate Anomaly (MCA). However, temperatures of the MCA never exceeded those of the 20th century. Since ~ 1400 AD significantly higher portions of ice rafted debris and high planktic foraminifer fluxes suggest that the site was located in the region of a seasonal highly fluctuating sea ice margin. A sharp reduction in planktic foraminifer fluxes around 800 AD and after 1730 AD indicates cool summer conditions with major influence of sea ice/icebergs. High amounts of the subpolar planktic foraminifer species Turborotalia quinqueloba in size fraction 150-250 µm indicate strengthened Atlantic Water inflow to the eastern Fram Strait already after ~ 1860 AD. Nevertheless surface conditions stayed cold well into the 20th century indicated by low planktic foraminiferal fluxes. Most likely at the beginning of the 20th century, cold conditions of the terminating Little Ice Age period persisted at the surface whereas warm and saline Atlantic Water already strengthened, hereby subsiding below the cold upper mixed layer. Surface sediments with high abundances of subpolar planktic foraminifers indicate a strong inflow of Atlantic Water providing seasonal ice-free conditions in the eastern Fram Strait during the last few decades.