963 resultados para Chromatography coupled to mass spectrometry
Resumo:
Treatment of B cell lymphoma patients with MoAbs specific for the common B cell marker (CD20) has shown a good overall response rate, but the number of complete remissions is still very low. The use of MoAbs coupled to radioisotopes can improve the results, but induces undesirable myelodepression. As an alternative, we proposed to combine the specificity of MoAbs with the immunogenicity of T cell epitopes. We have previously shown that an anti-Ig lambda MoAb coupled to an MHC class II-restricted universal T cell epitope peptide P2 derived from tetanus toxin induces efficient lysis of a human B cell lymphoma by a specific CD4+ T cell line. Here we demonstrate that the antigen presentation properties of the MoAb peptide conjugate are maintained using a MoAb directed against a common B cell marker, CD19, which is known to be co-internalized with the B cell immunoglobulin receptor. In addition, we provide evidence that B cell lysis is mediated by the Fas apoptosis pathway, since Fas (CD95), but not tumour necrosis factor receptor (TNFr) or TNF-related receptors, is expressed by the target B cells, and FasL, but not perforin, is expressed by the effector T cells. These results show that B cell lymphomas can be 'foreignized' by MoAb-peptide P2 conjugates directed against the common B cell marker CD19 and eliminated by peptide P2-specific CD4+ T cells, via the ubiquitous Fas receptor. This approach, which bridges the specificity of passive antibody therapy with an active T cell immune response, may be complementary to and more efficient than the present therapy results with unconjugated chimeric anti-CD20 MoAbs.
Resumo:
The concept of antibody-mediated targeting of antigenic MHC/peptide complexes on tumor cells in order to sensitize them to T-lymphocyte cytotoxicity represents an attractive new immunotherapy strategy. In vitro experiments have shown that an antibody chemically conjugated or fused to monomeric MHC/peptide can be oligomerized on the surface of tumor cells, rendering them susceptible to efficient lysis by MHC-peptide restricted specific T-cell clones. However, this strategy has not yet been tested entirely in vivo in immunocompetent animals. To this aim, we took advantage of OT-1 mice which have a transgenic T-cell receptor specific for the ovalbumin (ova) immunodominant peptide (257-264) expressed in the context of the MHC class I H-2K(b). We prepared and characterized conjugates between the Fab' fragment from a high-affinity monoclonal antibody to carcinoembryonic antigen (CEA) and the H-2K(b) /ova peptide complex. First, we showed in OT-1 mice that the grafting and growth of a syngeneic colon carcinoma line transfected with CEA could be specifically inhibited by systemic injections of the conjugate. Next, using CEA transgenic C57BL/6 mice adoptively transferred with OT-1 spleen cells and immunized with ovalbumin, we demonstrated that systemic injections of the anti-CEA-H-2K(b) /ova conjugate could induce specific growth inhibition and regression of well-established, palpable subcutaneous grafts from the syngeneic CEA-transfected colon carcinoma line. These results, obtained in a well-characterized syngeneic carcinoma model, demonstrate that the antibody-MHC/peptide strategy can function in vivo. Further preclinical experimental studies, using an anti-viral T-cell response, will be performed before this new form of immunotherapy can be considered for clinical use.
Resumo:
Gas-filled microbubbles (MB) are a very promising alternative to the currently evaluated lipid- or polymer-based particulate Ag delivery systems. We recently demonstrated the ability of MB to deliver associated Ag to DC, to activate them and thereby induce both humoral and cellular immune responses. We now extended the characterization of MB as antigen-delivery system by appraising the efficiency of MB-associated ovalbumin (OVA-MB) at protecting mice against pathogen infection. Ultrasound-mediated imaging demonstrated that the administration of OVA via MB generates a depot at the injection site that lasts for several hours. We found that OVA-MB injected subcutaneously is far more effective at inducing specific Ab and T cell immunity than immunization with free OVA. Moreover, a covalent link between MB and OVA causes a stronger bias towards a Th1-type of immune response than adsorption of the Ag or its covalent link to liposomes of the same lipid composition. Finally, vaccination of mice with OVA-MB partially protects against a systemic infection with OVA-expressing Listeria monocytogenes. The vaccine induces specific effector CD8 T cell responses capable of decreasing more than 100 fold the bacterial load. MB thus represent a potent Ag delivery system for vaccination against intracellular infectious agents.
Resumo:
In Duchenne muscular dystrophy (DMD), a persistently altered and reorganizing extracellular matrix (ECM) within inflamed muscle promotes damage and dysfunction. However, the molecular determinants of the ECM that mediate inflammatory changes and faulty tissue reorganization remain poorly defined. Here, we show that fibrin deposition is a conspicuous consequence of muscle-vascular damage in dystrophic muscles of DMD patients and mdx mice and that elimination of fibrin(ogen) attenuated dystrophy progression in mdx mice. These benefits appear to be tied to: (i) a decrease in leukocyte integrin α(M)β(2)-mediated proinflammatory programs, thereby attenuating counterproductive inflammation and muscle degeneration; and (ii) a release of satellite cells from persistent inhibitory signals, thereby promoting regeneration. Remarkably, Fib-gamma(390-396A) (Fibγ(390-396A)) mice expressing a mutant form of fibrinogen with normal clotting function, but lacking the α(M)β(2) binding motif, ameliorated dystrophic pathology. Delivery of a fibrinogen/α(M)β(2) blocking peptide was similarly beneficial. Conversely, intramuscular fibrinogen delivery sufficed to induce inflammation and degeneration in fibrinogen-null mice. Thus, local fibrin(ogen) deposition drives dystrophic muscle inflammation and dysfunction, and disruption of fibrin(ogen)-α(M)β(2) interactions may provide a novel strategy for DMD treatment.
Resumo:
This paper reports the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), secondary ion mass spectrometry (SIMS) and laser fluorination analyses. The focus of this initiative was to establish the suitability of this large single zircon crystal for calibrating in situ analyses of the rare earth elements and oxygen isotopes, as well as to provide working values for key geochemical systems. In addition to extensive testing of the chemical and structural homogeneity of this sample, the occurrence of banding in 91500 in both backscattered electron and cathodoluminescence images is described in detail. Blind intercomparison data reported by both LA-ICP-MS and SIMS laboratories indicate that only small systematic differences exist between the data sets provided by these two techniques. Furthermore, the use of NIST SRM 610 glass as the calibrant for SIMS analyses was found to introduce little or no systematic error into the results for zircon. Based on both laser fluorination and SIMS data, zircon 91500 seems to be very well suited for calibrating in situ oxygen isotopic analyses.
Resumo:
This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.
Resumo:
Devolatilization reactions and subsequent transfer of fluid from subducted oceanic crust into the overlying mantle wedge are important processes, which are responsible for the specific geochemical characteristics of subduction-related metamorphic rocks, as well as those of arc magmatism. To better understand the geochemical fingerprint induced by fluid mobilization during dehydration and rehydration processes related to subduction zone metamorphism, the trace element and rare earth element (REE) distribution patterns in HP-LT metamorphic assemblages in eclogite-, blueschist- and greenschist-facies rocks of the Ile de Groix were obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) analysis. This study focuses on 10 massive basic rocks representing former hydrothermally altered mid-ocean ridge basalts (MORB), four banded basic rocks of volcano-sedimentary origin and one micaschist. The main hosts for incompatible trace elements are epidote (REE, Th, U, Pb, Sr), garnet [Y, heavy REE (HREE)], phengite (Cs, Rb, Ba, B), titanite [Ti, Nb, Ta, REE; HREE > LREE (light REE)], rutile (Ti, Nb, Ta) and apatite (REE, Sr). The trace element contents of omphacite, amphibole, albite and chlorite are low. The incompatible trace element contents of minerals are controlled by the stable metamorphic mineral assemblage and directly related to the appearance, disappearance and reappearance of minerals, especially epidote, garnet, titanite, rutile and phengite, during subduction zone metamorphism. Epidote is a key mineral in the trace element exchange process because of its large stability field, ranging from lower greenschist- to blueschist- and eclogite-facies conditions. Different generations of epidote are generally observed and related to the coexisting phases at different stages of the metamorphic cycle (e.g. lawsonite, garnet, titanite). Epidote thus controls most of the REE budget during the changing P-T conditions along the prograde and retrograde path. Phengite also plays an important role in determining the large ion lithophile element (LILE) budget, as it is stable to high P-T conditions. The breakdown of phengite causes the release of LILE during retrogression. A comparison of trace element abundances in whole-rocks and minerals shows that the HP-LT metamorphic rocks largely retain the geochemical characteristics of their basic, volcano-sedimentary and pelitic protoliths, including a hydrothermal alteration overprint before the subduction process. A large part of the incompatible trace elements remained trapped in the rocks and was recycled within the various metamorphic assemblages stable under changing metamorphic conditions during the subduction process, indicating that devolatilization reactions in massive basic rocks do not necessarily imply significant simultaneous trace element and REE release.
Resumo:
Anthropogenic emissions of metals from sources such as smelters are an international problem, but there is limited published information on emissions from Australian smelters. The objective of this study was to investigate the regional distribution of heavy metals in soils in the vicinity of the industrial complex of Port Kembla, NSW, Australia, which comprises a copper smelter, steelworks and associated industries. Soil samples (n=25) were collected at the depths of 0-5 and 5-20 cm, air dried and sieved to < 2 mm. Aqua regia extractable amounts of As, Cr, Cu, Ph and Zn were analysed by inductively coupled plasma mass spectrometry (lCP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Outliers were identified from background levels by statistical methods. Mean background levels at a depth of 0-5 cm were estimated at 3.2 mg/kg As, 12 mg/kg Cr, 49 mg/kg Cu, 20 mg/kg Ph and 42 mg/kg Zn. Outliers for elevated As and Cu values were mainly present within 4 km from the Port Kembla industrial complex, but high Ph at two sites and high Zn concentrations were found at six sites up to 23 km from Port Kembla. Chromium concentrations were not anomalous close to the industrial complex. There was no significant difference of metal concentrations at depths of 0-5 and 5-20 cm, except for Ph and Zn. Copper and As concentrations in the soils are probably related to the concentrations in the parent rock. From this investigation, the extent of the contamination emanating from the Port Kembla industrial complex is limited to 1-13 km, but most likely <4 km, depending on the element; the contamination at the greater distance may not originate from the industrial complex. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Unassembled immunoglobulin light chains expressed by the mouse plasmacytoma cell line NS1 (KNS1) are degraded in vivo with a half-life of 50-60 min in a way that closely resembles endoplasmic reticulum (ER)-associated degradation (Knittler et al., 1995). Here we show that the peptide aldehydes MG132 and PS1 and the specific proteasome inhibitor lactacystin effectively increased the half-life of KNS1, arguing for a proteasome-mediated degradation pathway. Subcellular fractionation and protease protection assays have indicated an ER localization of KNS1 upon proteasome inhibition. This was independently confirmed by the analysis of the folding state of KNS1and size fractionation experiments showing that the immunoglobulin light chain remained bound to the ER chaperone BiP when the activity of the proteasome was blocked. Moreover, kinetic studies performed in lactacystin-treated cells revealed a time-dependent increase in the physical stability of the BiP-KNS1complex, suggesting that additional proteins are present in the older complex. Together, our data support a model for ER-associated degradation in which both the release of a soluble nonglycosylated protein from BiP and its retrotranslocation out of the ER are tightly coupled with proteasome activity.
Resumo:
This article summarizes the basic principles of mass spectrometry instrumentation with special emphasis in sample introduction methods, ionization techniques and mass analyzers used in the different mass spectrometrytechniques.
Resumo:
This article summarizes the configurations involving isotope ratio mass spectrometry (IRMS) technology available at the CCiTUB and the wide range of possible applications. Some examples of these applications are shown.
Resumo:
Adrenoceptors are prototypic members of the superfamily of seven transmembrane domain, G protein-coupled receptors. Study of the properties of several mutationally activated adrenoceptors is deepening understanding of the normal functioning of this ubiquitous class of receptors. The new findings suggest an expansion of the classical ternary complex model of receptor action to include an explicit isomerization of the receptors from an inactive to an active state which couples to the G protein ('allosteric ternary complex model'). This isomerization involves conformational changes which may occur spontaneously, or be induced by agonists or appropriate mutations which abrogate the normal 'constraining' function of the receptor, allowing it to 'relax' into the active conformation. Robert Lefkowitz and colleagues discuss the physiological and pathophysiological implications of these new insights into regulation of receptor activity.
Resumo:
U-Pb dating of zircons by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) is a widely used analytical technique in Earth Sciences. For U-Pb ages below 1 billion years (1 Ga), Pb-206/U-238 dates are usually used, showing the least bias by external parameters such as the presence of initial lead and its isotopic composition in the analysed mineral. Precision and accuracy of the Pb/U ratio are thus of highest importance in LA-ICPMS geochronology. We consider the evaluation of the statistical distribution of the sweep intensities based on goodness-of-fit tests in order to find a model probability distribution fitting the data to apply an appropriate formulation for the standard deviation. We then discuss three main methods to calculate the Pb/U intensity ratio and its uncertainty in the LA-ICPMS: (1) ratio-of-the-mean intensities method, (2) mean-of-the-intensity-ratios method and (3) intercept method. These methods apply different functions to the same raw intensity vs. time data to calculate the mean Pb/U intensity ratio. Thus, the calculated intensity ratio and its uncertainty depend on the method applied. We demonstrate that the accuracy and, conditionally, the precision of the ratio-of-the-mean intensities method are invariant to the intensity fluctuations and averaging related to the dwell time selection and off-line data transformation (averaging of several sweeps); we present a statistical approach how to calculate the uncertainty of this method for transient signals. We also show that the accuracy of methods (2) and (3) is influenced by the intensity fluctuations and averaging, and the extent of this influence can amount to tens of percentage points; we show that the uncertainty of these methods also depends on how the signal is averaged. Each of the above methods imposes requirements to the instrumentation. The ratio-of-the-mean intensities method is sufficiently accurate provided the laser induced fractionation between the beginning and the end of the signal is kept low and linear. We show, based on a comprehensive series of analyses with different ablation pit sizes, energy densities and repetition rates for a 193 nm ns-ablation system that such a fractionation behaviour requires using a low ablation speed (low energy density and low repetition rate). Overall, we conclude that the ratio-of-the-mean intensities method combined with low sampling rates is the most mathematically accurate among the existing data treatment methods for U-Pb zircon dating by sensitive sector field ICPMS.