965 resultados para Chromatographic Assay
Resumo:
Bone marrow mesenchymal stem cells (MSCs) promote nerve growth and functional recovery in animal models of spinal cord injury (SCI) to varying levels. The authors have tested high-content screening to examine the effects of MSC-conditioned medium (MSC-CM) on neurite outgrowth from the human neuroblastoma cell line SH-SY5Y and from explants of chick dorsal root ganglia (DRG). These analyses were compared to previously published methods that involved hand-tracing individual neurites. Both methods demonstrated that MSC-CM promoted neurite outgrowth. Each showed the proportion of SH-SY5Y cells with neurites increased by ~200% in MSC-CM within 48 h, and the number of neurites/SH-SY5Y cells was significantly increased in MSC-CM compared with control medium. For high-content screening, the analysis was performed within minutes, testing multiple samples of MSC-CM and in each case measuring >15,000 SH-SY5Y cells. In contrast, the manual measurement of neurite outgrowth from >200 SH-SY5Y cells in a single sample of MSC-CM took at least 1 h. High-content analysis provided additional measures of increased neurite branching in MSC-CM compared with control medium. MSC-CM was also found to stimulate neurite outgrowth in DRG explants using either method. The application of the high-content analysis was less well optimized for measuring neurite outgrowth from DRG explants than from SH-SY5Y cells.
Resumo:
Although techniques such as biopanning rely heavily upon the screening of randomized gene libraries, there is surprisingly little information available on the construction of those libraries. In general, it is based on the cloning of 'randomized' synthetic oligonucleotides, in which given position(s) contain an equal mixture of all four bases. Yet, many supposedly 'randomized' libraries contain significant elements of bias and/or omission. Here, we report the development and validation of a new, PCR-based assay that enables rapid examination of library composition both prior to and after cloning. By using our assay to analyse model libraries, we demonstrate that the cloning of a given distribution of sequences does not necessarily result in a similarly composed library of clones. Thus, while bias in randomized synthetic oligonucleotide mixtures can be virtually eliminated by using unequal ratios of the four phosphoramidites, the use of such mixtures does not ensure retrieval of a truly randomized library. We propose that in the absence of a technique to control cloning frequencies, the ability to analyse the composition of libraries after cloning will enhance significantly the quality of information derived from those libraries. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The initial aim of this project was to improve the performance of a chromatographic bioreactor-separator (CBRS). In such a system, a dilute enzyme solution is pumped continuously through a preparative chromatographic column, while pulses of substrate are periodically injected on to the column. Enzymic reaction and separation are therefore performed in a single unit operation. The chromatographic columns used were jacketed glass columns ranging from 1 to 2 metres long with an internal diameter of 1.5 cm. Linking these columns allowed 1, 2, 3 and 4 metre long CBRS systems to be constructed. The hydrolysis of lactose in the presence of β~galactosidase was the reaction of study. From previous work at Aston University, there appeared to be no difficulties in achieving complete lactose hydrolysis in a CBRS. There did, however, appear to be scope for improving the separative performance, so this was adopted as an initial goal. Reducing the particle size of the stationary phase was identified as a way of achieving this improvement. A cation exchange resin was selected which had an average particle size of around half that previously used when studying this reaction. A CBRS system was developed which overcame the operational problems (such as high pressure drop development) associated with use of such a particle size. A significant improvement in separative power was achieved. This was shown by an increase in the number of theoretical plates (N) from about 500 to about 3000 for a 2 metre long CBRS, coupled with higher resolution. A simple experiment with the 1 metre column showed that combined bioreaction and separation was achievable in this system. Having improved the separative performance of the system, the factors affecting enzymic reaction in a CBRS were investigated; including pulse volume and the degree of mixing between enzyme and substrate. The progress of reaction in a CBRS was then studied. This information was related to the interaction of reaction and separation over the reaction zone. The effect of injecting a pulse over a length of time as in CBRS operation was simulated by fed batch experiments. These experiments were performed in parallel with normal batch experiments where the substrate is mixed almost instantly with the enzyme. The batch experiments enabled samples to be taken every minute and revealed that reaction is very rapid. The hydrodynamic characteristics of the two injector configurations used in CBRS construction were studied using Magnetic Resonance Imaging, combined with hydrodynamic calculations. During the optimisation studies, galactooligosaccharides (GOS) were detected as intermediates in the hydrolysis process. GOS are valuable products with potential and existing applications in food manufacture (as nutraceuticals), medicine and drug targeting. The focus of the research was therefore turned to GOS production. A means of controlling reaction to arrest break down of GOS was required. Raising temperature was identified as a possible means of achieving this within a CBRS. Studies were undertaken to optimise the yield of oligosaccharides, culminating in the design, construction and evaluation of a Dithermal Chromatographic Bioreactor-separator.
Resumo:
The objective of this work has been to investigate the principle of combined bioreaction and separation in a simulated counter-current chromatographic bioreactor-separator system (SCCR-S). The SCCR-S system consisted of twelve 5.4cm i.d x 75cm long columns packed with calcium charged cross-linked polystyrene resin. Three bioreactions, namely the saccharification of modified starch to maltose and dextrin using the enzyme maltogenase, the hydrolysis of lactose to galactose and glucose in the presence of the enzyme lactase and the biosynthesis of dextran from sucrose using the enzyme dextransucrase. Combined bioreaction and separation has been successfully carried out in the SCCR-S system for the saccharification of modified starch to maltose and dextrin. The effects of the operating parameters (switch time, eluent flowrate, feed concentration and enzyme activity) on the performance of the SCCR-S system were investigated. By using an eluent of dilute enzyme solution, starch conversions of up to 60% were achieved using lower amounts of enzyme than the theoretical amount required by a conventional bioreactor to produce the same amount of maltose over the same time period. Comparing the SCCR-S system to a continuous annular chromatograph (CRAC) for the saccharification of modified starch showed that the SCCR-S system required only 34.6-47.3% of the amount of enzyme required by the CRAC. The SCCR-S system was operated in the batch and continuous modes as a bioreactor-separator for the hydrolysis of lactose to galactose and glucose. By operating the system in the continuous mode, the operating parameters were further investigated. During these experiments the eluent was deionised water and the enzyme was introduced into the system through the same port as the feed. The galactose produced was retarded and moved with the stationary phase to be purge as the galactose rich product (GalRP) while the glucose moved with the mobile phase and was collected as the glucose rich product (GRP). By operating at up to 30%w/v lactose feed concentrations, complete conversions were achieved using only 48% of the theoretical amount of enzyme required by a conventional bioreactor to hydrolyse the same amount of glucose over the same time period. The main operating parameters affecting the performance of the SCCR-S system operating in the batch mode were investigated and the results compared to those of the continuous operation of the SCCR-S system. . During the biosynthesis of dextran in the SCCR-S system, a method of on-line regeneration of the resin was required to operate the system continuously. Complete conversion was achieved at sucrose feed concentrations of 5%w/v with fructose rich. products (FRP) of up to 100% obtained. The dextran rich products were contaninated by small amounts of glucose and levan formed during the bioreaction. Mathematical modelling and computer simulation of the SCCR-S. system operating in the continuous mode for the hydrolysis of lactose has been carried out. .
Resumo:
Combined bioreaction separation studies have been carried out for the first time on a moving port semi-continuous counter-current chromatographic reactor-separator (SCCR-S1) consisting of twelve 5.4cm id x 75cm long columns packed with calcium charged cross-linked polystyrene resin (KORELA V07C). The inversion of sucrose to glucose and fructose in the presence of the enzyme invertase and the biochemIcal synthesis of dextran and fructose from sucrose in the presence of the enzyme dextransucrase were investigated. A dilute stream of the appropriate enzyme in deionised water was used as the eluent stream. The effect of switch time, feed concentration, enzyme activity, eluent rate and enzyme to feed concentration ratio on the combined bioreaction-separation were investigated. For the invertase reaction, at 20.77% w/v sucrose feed concentrations complete conversions were achieved. The enzyme usage was 34% of the theoretical enzyme amount needed to convert an equivalent amount of sucrose over the same time period when using a conventional fermenter. The fructose rich (FRP) and glucose rich (GRP) product purities obtained were over 90%. By operating at 35% w/v sucrose feed concentration and employing the product splitting and recycling techniques, the total concentration and purity of the GRP increased from 32% w/v to 4.6% and from 92.3% to 95% respectively. The FRP concentration also increased from 1.82% w/v to 2.88% w/v. A mathematical model was developed for the combined reaction-separation and used to simulate the continuous inversion of sucrose and product separation using the SCCR-S1. In the biosynthesis of dextran studies, 52% conversion of a 2% w/v sucrose concentration feed was achieved. An average dextran molecular weight of 4 millIon was obtained in the dextran rich (DRP) product stream. The enzyme dextransucrase was purifed successfully using centrifugation and ultrafiltration techniques.
Resumo:
The objective of this work has been to study the behaviour and performance of a batch chromatographic column under simultaneous bioreaction and separation conditions for several carbohydrate feedstocks. Four bioreactions were chosen, namely the hydrolysis of sucrose to glucose and fructose using the enzyme invertase, the hydrolysis of inulin to fructose and glucose using inulinase, the hydrolysis of lactose to glucose and galactose using lactase and the isomerization of glucose to fructose using glucose isomerase. The chromatographic columns employed were jacketed glass columns ranging from 1 m to 2 m long and the internal diameter ranging from 0.97 cm to 1.97 cm. The stationary phase used was a cation exchange resin (PUROLITE PCR-833) in the Ca2+ form for the hydrolysis and the Mg2+ form for the isomerization reactions. The mobile phase used was a diluted enzyme solution which was continuously pumped through the chromatographic bed. The substrate was injected at the top of the bed as a pulse. The effect of the parameters pulse size, the amount of substrate solution introduced into the system corresponding to a percentage of the total empty column volume (% TECV), pulse concentration, eluent flowrate and the enzyme activity of the eluent were investigated. For the system sucrose-invertase complete conversions of substrate were achieved for pulse sizes and pulse concentrations of up to 20% TECV and 60% w/v, respectively. Products with purity above 90% were obtained. The enzyme consumption was 45% of the amount theoretically required to produce the same amount of product as in a conventional batch reactor. A value of 27 kg sucrose/m3 resin/h for the throughput of the system was achieved. The systematic investigation of the factors affecting the performance of the batch chromatographic bioreactor-separator was carried out by employing a factorial experimental procedure. The main factors affecting the performance of the system were the flowrate and enzyme activity. For the system inulin-inulinase total conversions were also obtained for pulses sizes of up to 20 % TECV and a pulse concentration of 10 % w/v. Fructose rich fractions with 100 % purity and representing up to 99.4 % of the total fructose generated were obtained with an enzyme consumption of 32 % of the amount theoretically required to produce the same amount of product in a conventional batch reactor. The hydrolysis of lactose by lactase was studied in the glass columns and also in an SCCR-S unit adapted for batch operation, in co-operation with Dr. Shieh, a fellow researcher in the Chemical Engineering and Applied Chemistry Department at Aston University. By operating at up to 30 % w/v lactose feed concentrations complete conversions were obtained and the purities of the products generated were above 90%. An enzyme consumption of 48 % of the amount theoretically required to produce the same amount of product in a conventional batch reactor was achieved. On working with the system glucose-glucose isomerase, which is a reversible reaction, the separation obtained with the stationary phase conditioned in the magnesium form was very poor although the conversion obtained was compatible with those for conventional batch reactors. By working with a mixed pulse of enzyme and substrate, up to 82.5 % of the fructose generated with a purity of 100 % was obtained. The mathematical modelling and computer simulation of the batch chromatographic bioreaction-separation has been performed on a personal computer. A finite difference method was used to solve the partial differential equations and the simulation results showed good agreement with the experimental results.