927 resultados para Chaminé solar. Convecção livre. Energia solar. Indução de fluxo de ar


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims. We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters.

Methods. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 s, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300 s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy.

Results. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne ≤ 1015 cm-3) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit "tornado"-like behavior or a "bath-tub" effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the generation mechanisms of MHD Poynting flux in the magnetized solar photosphere. Using radiative MHD modeling of the solar photosphere with initial magnetic configurations that differ in their field strength and geometry, we show the presence of two different mechanisms for MHD Poynting flux generation in simulations of solar photospheric magnetoconvection. The weaker mechanism is connected to vertical transport of weak horizontal magnetic fields in the convectively stable layers of the upper photosphere, while the stronger is the production of Poynting flux in strongly magnetized intergranular lanes experiencing horizontal vortex motions. These mechanisms may be responsible for the energy transport from the solar convection zone to the higher layers of the solar atmosphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solar water disinfection (SODIS) is a well-established inexpensive means of water disinfection in developing countries, but lacks an indicator to illustrate its end-point. A study of the solar UV dosage required for SODIS, in order to achieve a bacteria concentration below the detection limit for: Escherichia coli, Enterococcus spp. and Clostridium perfringens, in water in PET bottles, PE and PE/EVA bags showed disinfection to be most efficient in PE bags, with a solar UV (290–385 nm) dose of 389 kJ m−2 required. In parallel to the disinfection experiments, a range of polyoxometalate, semiconductor photocatalysis and photodegradable dye-based solar UV dosimeter indicators were tested under the same solar UV irradiation conditions. All three types of dosimeter produced indicators that largely and significantly change colour upon exposure to 389 kJ m−2 solar UV; further indicators are reported which change colour at higher doses and hence would be suitable for the less efficient SODIS containers tested. All indicators tested were robust, easy to use and inexpensive so as not to add significantly to the attractive low cost of SODIS. Furthermore, whilst semiconductor photocatalyst and photodegradable dye based indicators are disposable, one-use systems, the polyoxometalate based indicators recover colour in the dark overnight, allowing them to be reused, and hence further decreasing the cost of using indicators during the implementation of the SODIS method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematical models are useful tools for simulation, evaluation, optimal operation and control of solar cells and proton exchange membrane fuel cells (PEMFCs). To identify the model parameters of these two type of cells efficiently, a biogeography-based optimization algorithm with mutation strategies (BBO-M) is proposed. The BBO-M uses the structure of biogeography-based optimization algorithm (BBO), and both the mutation motivated from the differential evolution (DE) algorithm and the chaos theory are incorporated into the BBO structure for improving the global searching capability of the algorithm. Numerical experiments have been conducted on ten benchmark functions with 50 dimensions, and the results show that BBO-M can produce solutions of high quality and has fast convergence rate. Then, the proposed BBO-M is applied to the model parameter estimation of the two type of cells. The experimental results clearly demonstrate the power of the proposed BBO-M in estimating model parameters of both solar and fuel cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An automated solar reactor system was designed and built to carry out catalytic pyrolysis of scrap rubber tires at 550°C. To maximize solar energy concentration, a two degrees-of-freedom automated sun tracking system was developed and implemented. Both the azimuth and zenith angles were controlled via feedback from six photo-resistors positioned on a Fresnel lens. The pyrolysis of rubber tires was tested with the presence of two types of acidic catalysts, H-beta and H-USY. Additionally, a photoactive TiO<inf>2</inf> catalyst was used and the products were compared in terms of gas yields and composition. The catalysts were characterized by BET analysis and the pyrolysis gases and liquids were analyzed using GC-MS. The oil and gas yields were relatively high with the highest gas yield reaching 32.8% with H-beta catalyst while TiO<inf>2</inf> gave the same results as thermal pyrolysis without any catalyst. In the presence of zeolites, the dominant gasoline-like components in the gas were propene and cyclobutene. The TiO<inf>2</inf> and non-catalytic experiments produced a gas containing gasoline-like products of mainly isoprene (76.4% and 88.4% respectively). As for the liquids they were composed of numerous components spread over a wide distribution of C<inf>10</inf> to C<inf>29</inf> hydrocarbons of naphthalene and cyclohexane/ene derivatives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradiance were taken at multiple air mass flow rates. It is shown that the length of the collector cavities has a direct impact on the efficiency of the system. It is also shown that beyond a height-to-flow ratio of 0.023m/m<sup>3</sup>/hr/m<sup>2</sup>, no additional heat output is obtained by increasing the collector height for the experimental setup in this study, but these numbers would obviously be different if the experimental setup or test environment (e.g. location and climate) change. An equation for predicting the temperature rise of the BPSC is proposed.