970 resultados para Chaliyar river Estuary
Resumo:
Sedimentary biomarker pigments around Cochin estuary situated in the southwest coast of India were determined by HPLC. Fucoxanthin, an indicator of diatom was observed to be the most abundant carotenoid pigment in the estuary. Dinoflagellate derived carotenoid pigment peridinin was confined in the southern part of estuary and zeaxanthin pigment indicative of cyanobacteria were more found in sites influenced by anthropogenic activities. One compound having close similarity to fucoxanthin was also detected. Alloxanthin (cryptophyceae), chl b (green algae), canthaxanthin, neoxanthin, lutein and peridinin isomer were also detected by spectra and corresponding algal class were identified. The highest concentration of chl a (11.01 mg g 1) found near to the anthropogenic affected area while the lowest chl a (0.65 mg g 1) was recorded in industrial area. Degradation products of chl a, such as pheophorbide and pheophytin were observed and principal mode of mechanism of degradation were derived. Higher pheopigments content than chl a, reflects a density trapping of dead cells and early degradation of phytopigments from grazing activities
Resumo:
Distribution of toxic metal in the sediment core is an important area of research for environmental impact studies. Sediment cores were collected from two prominent region(C1 and C2) of CE and subjected to geochemical analysis to determine distribution of toxic metals (Cd, Co, Cr, Cu and Pb ), texture characteristics, total organic carbon (TOC) and CHNS. Statistical analysis was done to understand the interrelationship between the components. In the studied cores, metal contamination level was identified for Pb, Cu; Cr, in C1 and C2 respectively. The metal distribution depends on the granulometric factor, geogenic mineral components and anthropogenic input. Correlation analysis (CA) and Principal component(PCA) analysis also support these results
Resumo:
This paper presents the first detailed investigation on the residual levels of organochlorine insecticide (OCI) concentrations in the Cochin estuarine sediment. It aims in elucidate their distribution and ecological impact on the aquatic system. Concentrations of persistent organochlorine compound (OC) were determined for 17 surface sediment samples which were collected from specific sites of Cochin Estuarine System (CES) over a period of November 2009 and November 2011. The contaminant levels in the CES were compared with other worldwide ecosystems. The sites bearing high concentration of organochlorine compounds are well associated with the complexities and low energy environment. Evaluation of ecotoxicological factors suggests that adverse biological effects are expected in certain areas of CES
Resumo:
The distribution and accumulation of the rare earth elements (REE) in the sediments of the Cochin Estuary and adjacent continental shelf were investigated. The rare earth elements like La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the heavy metals like Mg, V, Cr, Mn, Fe, Cu, Zn, U, Th were analysed by using standard analytical methods. The Post-Archean Australian Shale composition was used to normalise the rare earth elements. It was found that the sediments were more enriched with the lighter rare earth elements than the heavier ones. The positive correlation between the concentrations of REE, Fe and Mn could explain the precipitation of oxyhydroxides in the study area. The factor analysis and correlation analysis suggest common sources of origin for the REEs. From the Ce-anomalies calculated, it was found that an oxic environment predominates in all stations except the station No. 2. The Eu-anomaly gave an idea that the origin of REEs may be from the feldspar. The parameters like total organic carbon, U/Th ratio, authigenic U, Cu/Zn, V/Cr ratios revealed the oxic environment and thus the depositional behaviour of REEs in the region
Resumo:
Corrosion characteristics of brass panels were investigated in the Vembanad estuarine water (Cochin Harbor), India over a period of one year. The corrosion rate of brass samples during exposure was determined by gravimetric method and fouling on panels was assessed, exposure-wise, in terms of biomass. Corrosion products were identified by X-Ray diffraction. The results of the study were discussed in the light of the seawater characteristics
Resumo:
Inhibited α brasses are largely immune to dezincification in most water, but the effect of tin and arsenic addition to α/β brasses is not so reliable or predictable in controlling the problem. There have been many cases of dezincification in duplex brasses in both fresh water and seawater. There is no reliable method of inhibiting the dezincification of two-phase brass despite there are some protection methods such as inhibitors, electro deposition and electro polymerization. Organic coatings are effectively used for the protection of metals due to their capacity to act as a physical barrier between the metal surface and corrosive environment. Hence, epoxy coating on brass was applied and effect of this against dezincification in Cochin estuarine water over a period of one year was studied and reported in this paper
Resumo:
The Cochin estuary (CE), which is one of the largest wetland ecosystems, extends from Thanneermukkam bund in the south to Azhikode in the north. It functions as an effluent repository for more than 240 industries, the characteristics of which includes fertilizer, pesticide, radioactive mineral processing, chemical and allied industries, petroleum refining and heavy metal processing industries (Thyagarajan, 2004). Studies in the CE have been mostly on the spatial and temporal variations in the physical, chemical and biological characteristics of the estuary (Balachandran et al., 2006; Madhu et al., 2007; Menon et al., 2000; Qasim 2003;Qasim and Gopinathan 1969) . Although several monitoring programs have been initiated in the CE to understand the level of heavy metal pollution, these were restricted to trace metals distribution (Balachandran et al., 2005) or the influence of anthropogenic inputs on the benthos and phytoplankton (Madhu et al., 2007;Jayaraj, 2006). Recently, few studies were carried out on microbial ecology in the CE(Thottathil et al 2008a and b;Parvathi et al., 2009and 2011; Thomas et al., 2006;Chandran and Hatha, 2003). However, studies on metal - microbe interaction are hitherto not undertaken in this estuary. Hence, a study was undertaken at 3 sites with different level of heavy metal concentration tounderstand the abundance, diversity and mechanisms of resistance in metal resistant bacteria and its impact on the nutrient regeneration. The present work has also focused on the response of heavy metal resistant bacteria towards antibacterial agent’s antibiotics and silver nanoparticles
Resumo:
Cochin University of Science And Technology
Resumo:
The evolution of coast through geological time scale is dependent on the transgression-regression event subsequent to the rise or fall of sea level. This event is accounted by investigation of the vertical sediment deposition patterns and their interrelationship for paleo-enviornmental reconstruction. Different methods like sedimentological (grain size and micro-morphological) and geochemical (elemental relationship) analyses as well as radiocarbon dating are generally used to decipher the sea level changes and paleoclimatic conditions of the Quaternary sediment sequence. For the Indian coast with a coastline length of about 7500 km, studies on geological and geomorphological signatures of sea level changes during the Quaternary were reported in general by researchers during the last two decades. However, for the southwest coast of India particularily Kerala which is famous for its coastal landforms comprising of estuaries, lagoons, backwaters, coastal plains, cliffs and barrier beaches, studies pertaining to the marine transgression-regression events in the southern region are limited. The Neendakara-Kayamkulam coastal stretch in central Kerala where the coast is manifested with shore parallel Kayamkulam Lagoon on one side and shore perpendicular Ashtamudi Estuary on the other side indicating existence of an uplifted prograded coastal margin followed by barrier beaches, backwater channels, ridge and runnel topography is an ideal site for studying such events. Hence the present study has been taken up in this context to address the gap area. The location for collection of core samples representing coastal plain, estuarylagoon and offshore regions have been identified based on published literature and available sedimentary records. The objectives of the research work are: To study the lithological variations and depositional environments of sediment cores along the coastal plain, estuary-lagoon and offshore regions between Kollam and Kayamkulam in the central Kerala coast To study the transportation and diagenetic history of sediments in the area To investigate the geochemical characterization of sediments and to elucidate the source-sink relationship To understand the marine transgression-regression events and to propose a conceptual model for the region The thesis comprises of 8 chapters. The first chapter embodies the preamble for the selection and significance of this research work. The study area is introduced with details on its physiographical, geological, geomorphological, rainfall and climate information. A review of literature, compiling the research on different aspects such as physico-chemical, geomorphological, tectonics, transgression-regression events are presented in the second chapter and they are broadly classified into three viz:- International, National and Kerala. The field data collection and laboratory analyses adopted in the research work are discussed in the third chapter. For collection of sediment core samples from the coastal plains, rotary drilling method was employed whereas for the estuary-lagoon and offshore locations the gravity/piston corer method was adopted. The collected subsurficial samples were analysed for texture, surface micro-texture, elemental analysis, XRD and radiocarbon dating techniques for age determination. The fourth chapter deals with the textural analysis of the core samples collected from various predefined locations of the study area. The result reveals that the Ashtamudi Estuary is composed of silty clay to clayey type of sediments whereas offshore cores are carpeted with silty clay to relict sand. Investigation of the source of sediments deposited in the coastal plain located on either side of the estuary indicates the dominance of terrigenous to marine origin in the southern region whereas it is predominantly of marine origin towards the north. Further the hydrodynamic conditions as well as the depositional enviornment of the sediment cores are elucidated based on statistical parameters that decipher the deposition pattern at various locations viz., coastal plain (open to closed basin), Ashtamudi Estuary (partially open to restricted estuary to closed basin) and offshore (open channel). The intensity of clay minerals is also discussed. From the results of radiocarbon dating the sediment depositional environments were deciphered.The results of the microtextural study of sediment samples (quartz grains) using Scanning Electron Microscope (SEM) are presented in the fifth chapter. These results throw light on the processes of transport and diagenetic history of the detrital sediments. Based on the lithological variations, selected quartz grains of different environments were also analysed. The study indicates that the southern coastal plain sediments were transported and deposited mechanically under fluvial environment followed by diagenesis under prolonged marine incursion. But in the case of the northern coastal plain, the sediments were transported and deposited under littoral environment indicating the dominance of marine incursion through mechanical as well as chemical processes. The quartz grains of the Ashtamudi Estuary indicate fluvial origin. The surface texture features of the offshore sediments suggest that the quartz grains are of littoral origin and represent the relict beach deposits. The geochemical characterisation of sediment cores based on geochemical classification, sediment maturity, palaeo-weathering and provenance in different environments are discussed in the sixth chapter. In the seventh chapter the integration of multiproxies data along with radiocarbon dates are presented and finally evolution and depositional history based on transgression–regression events is deciphered. The eighth chapter summarizes the major findings and conclusions of the study with recommendation for future work.
Resumo:
Wenn man die Existenz von physikalischen Mechanismen ignoriert, die für die Struktur hydrologischer Zeitreihen verantwortlich sind, kann das zu falschen Schlussfolgerungen bzgl. des Vorhandenseins möglicher Gedächtnis (memory) -Effekte, d.h. von Persistenz, führen. Die hier vorgelegte Doktorarbeit spürt der niedrigfrequenten klimatischen Variabilität innerhalb den hydrologischen Zyklus nach und bietet auf dieser "Reise" neue Einsichten in die Transformation der charakteristischen Eigenschaften von Zeitreihen mit einem Langzeitgedächtnis. Diese Studie vereint statistische Methoden der Zeitreihenanalyse mit empirisch-basierten Modelltechniken, um operative Modelle zu entwickeln, die in der Lage sind (1) die Dynamik des Abflusses zu modellieren, (2) sein zukünftiges Verhalten zu prognostizieren und (3) die Abflusszeitreihen an unbeobachteten Stellen abzuschätzen. Als solches präsentiert die hier vorgelegte Dissertation eine ausführliche Untersuchung zu den Ursachen der niedrigfrequenten Variabilität von hydrologischen Zeitreihen im deutschen Teil des Elbe-Einzugsgebietes, den Folgen dieser Variabilität und den physikalisch basierten Reaktionen von Oberflächen- und Grundwassermodellen auf die niedrigfrequenten Niederschlags-Eingangsganglinien. Die Doktorarbeit gliedert sich wie folgt: In Kapitel 1 wird als Hintergrundinformation das Hurst Phänomen beschrieben und ein kurzer Rückblick auf diesbezügliche Studien gegeben. Das Kapitel 2 diskutiert den Einfluss der Präsenz von niedrigfrequenten periodischen Zeitreihen auf die Zuverlässigkeit verschiedener Hurst-Parameter-Schätztechniken. Kapitel 3 korreliert die niedrigfrequente Niederschlagsvariabilität mit dem Index der Nord-Atlantischen Ozillations (NAO). Kapitel 4-6 sind auf den deutschen Teil des Elbe-Einzugsgebietes fokussiert. So werden in Kapitel 4 die niedrigfrequenten Variabilitäten der unterschiedlichen hydro-meteorologischen Parameter untersucht und es werden Modelle beschrieben, die die Dynamik dieser Niedrigfrequenzen und deren zukünftiges Verhalten simulieren. Kapitel 5 diskutiert die mögliche Anwendung der Ergebnisse für die charakteristische Skalen und die Verfahren der Analyse der zeitlichen Variabilität auf praktische Fragestellungen im Wasserbau sowie auf die zeitliche Bestimmung des Gebiets-Abflusses an unbeobachteten Stellen. Kapitel 6 verfolgt die Spur der Niedrigfrequenzzyklen im Niederschlag durch die einzelnen Komponenten des hydrologischen Zyklus, nämlich dem Direktabfluss, dem Basisabfluss, der Grundwasserströmung und dem Gebiets-Abfluss durch empirische Modellierung. Die Schlussfolgerungen werden im Kapitel 7 präsentiert. In einem Anhang werden technische Einzelheiten zu den verwendeten statistischen Methoden und die entwickelten Software-Tools beschrieben.
Resumo:
Globalization is widely regarded as the rise of the borderless world. However in practice, true globalization points rather to a “spatial logic” by which globalization is manifested locally in the shape of insular space. Globalization in this sense is not merely about the creation of physical fragmentation of space but also the creation of social disintegration. This study tries to proof that global processes also create various forms of insular space leading also to specific social implications. In order to examine the problem this study looks at two cases: China’s Pearl River Delta (PRD) and Jakarta in Indonesia. The PRD case reveals three forms of insular space namely the modular, concealed and the hierarchical. The modular points to the form of enclosed factories where workers are vulnerable for human-right violations due to the absent of public control. The concealed refers to the production of insular space by subtle discrimination against certain social groups in urban space. And the hierarchical points to a production of insular space that is formed by an imbalanced population flow. The Jakarta case attempts to show more types of insularity in relation to the complexity of a mega-city which is shaped by a culture of exclusion. Those are dormant and hollow insularity. The dormant refers to the genesis of insular– radical – community from a culture of resistance. The last type, the hollow, points to the process of making a “pseudo community” where sense of community is not really developed as well as weak social relationship with its surrounding. Although global process creates various expressions of territorial insularization, however, this study finds that the “line of flight” is always present, where the border of insularity is crossed. The PRD’s produces vernacular modernization done by peasants which is less likely to be controlled by the politics of insularization. In Jakarta, the culture of insularization causes urban informalities that have no space, neither spatially nor socially; hence their state of ephemerality continues as a tactic of place-making. This study argues that these crossings possess the potential for reconciling venue to defuse the power of insularity.
Resumo:
The indigenous vegetation surrounding the river oases on the southern rim of the Taklamakan Desert has drastically diminished due to overexploitation as a source of fodder, timber and fuel for the human population. The change in the spatial extent of landscape forms and vegetation types around the Qira oasis was analyzed by comparing SPOT satellite images from 1998 with aerial photographs from 1956. The analysis was supplemented by field surveys in 1999 and 2000. The study is part of a joint Chinese-European project with the aim of assessing the current state of the foreland vegetation, of gathering information on the regeneration potential and of suggesting procedures for a sustainable management. With 33 mm of annual precipitation, plants can only grow if they have access to groundwater, lakes or rivers. Most of the available water comes into the desert via rivers in the form of seasonal flooding events resulting from snow melt in the Kun Lun Mountains. This water is captured in canal systems and used for irrigation of arable fields. Among the eight herbaceous and woody vegetation types and the type of open sand without any plant life that were mapped in 2000 in the oasis foreland, only the latter, the oasis border between cultivated land and open Populus euphratica forests and Tamarix ramosissima-Phragmites australis riverbed vegetation could be clearly identified on the photographs from 1956. The comparison of the images revealed that the oasis increased in area between 1956 and 2000. Shifting sand was successfully combated near to the oasis borders but increased in extent at the outward border of the foreland vegetation. In contrast to expectations, the area covered with Populus trees was smaller in 1956 than today due to some new forests in the north of the oasis that have grown up since 1977. Subfossil wood and leaf remnants of Populus euphratica that were found in many places in the foreland must have originated from forests destroyed before 1956. In the last 50 years, the main Qira River has shifted its bed significantly northward and developed a new furcation with a large new bed in 1986. The natural river dynamics are not only an important factor in forming the oasis’ landscape but also in providing the only possible regeneration sites for all occurring plant species. The conclusion of the study is that the oasis landscape has changed considerably in the last 50 years due to natural floodings and to vegetation degradation by human overexploitation. The trend towards decreasing width of the indigenous vegetation belt resulting from the advancing desert and the expansion of arable land is particularly alarming because a decrease in its protective function against shifting sand can be expected in the future.
Resumo:
The Upper Blue Nile River Basin (UBNRB) located in the western part of Ethiopia, between 7° 45’ and 12° 45’N and 34° 05’ and 39° 45’E has a total area of 174962 km2 . More than 80% of the population in the basin is engaged in agricultural activities. Because of the particularly dry climate in the basin, likewise to most other regions of Ethiopia, the agricultural productivity depends to a very large extent on the occurrence of the seasonal rains. This situation makes agriculture highly vulnerable to the impact of potential climate hazards which are about to inflict Africa as a whole and Ethiopia in particular. To analyze these possible impacts of future climate change on the water resources in the UBNRB, in the first part of the thesis climate projection for precipitation, minimum and maximum temperatures in the basin, using downscaled predictors from three GCMs (ECHAM5, GFDL21 and CSIRO-MK3) under SRES scenarios A1B and A2 have been carried out. The two statistical downscaling models used are SDSM and LARS-WG, whereby SDSM is used to downscale ECHAM5-predictors alone and LARS-WG is applied in both mono-model mode with predictors from ECHAM5 and in multi-model mode with combined predictors from ECHAM5, GFDL21 and CSIRO-MK3. For the calibration/validation of the downscaled models, observed as well as NCEP climate data in the 1970 - 2000 reference period is used. The future projections are made for two time periods; 2046-2065 (2050s) and 2081-2100 (2090s). For the 2050s future time period the downscaled climate predictions indicate rise of 0.6°C to 2.7°C for the seasonal maximum temperatures Tmax, and of 0.5°C to 2.44°C for the minimum temperatures Tmin. Similarly, during the 2090s the seasonal Tmax increases by 0.9°C to 4.63°C and Tmin by 1°C to 4.6°C, whereby these increases are generally higher for the A2 than for the A1B scenario. For most sub-basins of the UBNRB, the predicted changes of Tmin are larger than those of Tmax. Meanwhile, for the precipitation, both downscaling tools predict large changes which, depending on the GCM employed, are such that the spring and summer seasons will be experiencing decreases between -36% to 1% and the autumn and winter seasons an increase of -8% to 126% for the two future time periods, regardless of the SRES scenario used. In the second part of the thesis the semi-distributed, physically based hydrologic model, SWAT (Soil Water Assessment Tool), is used to evaluate the impacts of the above-predicted future climate change on the hydrology and water resources of the UBNRB. Hereby the downscaled future predictors are used as input in the SWAT model to predict streamflow of the Upper Blue Nile as well as other relevant water resources parameter in the basin. Calibration and validation of the streamflow model is done again on 1970-2000 measured discharge at the outlet gage station Eldiem, whereby the most sensitive out the numerous “tuneable” calibration parameters in SWAT have been selected by means of a sophisticated sensitivity analysis. Consequently, a good calibration/validation model performance with a high NSE-coefficient of 0.89 is obtained. The results of the future simulations of streamflow in the basin, using both SDSM- and LARS-WG downscaled output in SWAT reveal a decline of -10% to -61% of the future Blue Nile streamflow, And, expectedly, these obviously adverse effects on the future UBNRB-water availibiliy are more exacerbated for the 2090’s than for the 2050’s, regardless of the SRES.
Resumo:
The rivers are considered as the life line of any country since they make water available for our domestic, industrial and recreational functions. The quality of river water signifies the health status and hygienic aspects of a particular region, but the quality of these life lines is continuously deteriorating due to discharge of sewage, garbage and industrial effluents into them. Thrust on water demand has increased manifolds due to the increased population, therefore tangible efforts to make the water sources free from pollution is catching attention all across the globe. This paper attempts to highlight the trends in water quality change of River Beas, right from Manali to Larji in India. This is an important river in the state of Himachal Pradesh and caters to the need of water for Manali and Kullu townships, besides other surrounding rural areas. The Manali-Larji Beas river stretch is exposed to the flow of sewage, garbage and muck resulting from various project activities, thereby making it vulnerable to pollution. In addition, the influx of thousands of tourists to these towns also contributes to the pollution load by their recreational and other tourist related activities. Pollution of this river has ultimately affected the livelihood of local population in this region. Hence, water quality monitoring was carried out for the said stretch between January, 2010 and January, 2012 at 15 various locations on quarterly basis, right from the upstream of Manali town and up to downstream of Larji dam. Temperature, color, odor, D.O. , pH, BOD, TSS, TC and FC has been the parameters that were studied. This study gives the broad idea about the characteristics of water at locations in the said river stretch, and suggestions for improving water quality and livelihood of local population in this particular domain.
Resumo:
Worldwide water managers are increasingly challenged to allocate sufficient and affordable water supplies to different water use sectors without further degrading river ecosystems and their valuable services to mankind. Since 1950 human population almost tripled, water abstractions increased by a factor of four, and the number of large dam constructions is about eight times higher today. From a hydrological perspective, the alteration of river flows (temporally and spatially) is one of the main consequences of global change and further impairments can be expected given growing population pressure and projected climate change. Implications have been addressed in numerous hydrological studies, but with a clear focus on human water demands. Ecological water requirements have often been neglected or addressed in a very simplistic manner, particularly from the large-scale perspective. With his PhD thesis, Christof Schneider took up the challenge to assess direct (dam operation and water abstraction) and indirect (climate change) impacts of human activities on river flow regimes and evaluate the consequences for river ecosystems by using a modeling approach. The global hydrology model WaterGAP3 (developed at CESR) was applied and further developed within this thesis to carry out several model experiments and assess anthropogenic river flow regime modifications and their effects on river ecosystems. To address the complexity of ecological water requirements the assessment is based on three main ideas: (i) the natural flow paradigm, (ii) the perception that different flows have different ecological functions, and (iii) the flood pulse concept. The thesis shows that WaterGAP3 performs well in representing ecologically relevant flow characteristics on a daily time step, and therefore justifies its application within this research field. For the first time a methodology was established to estimate bankfull flow on a 5 by 5 arc minute grid cell raster globally, which is a key parameter in eFlow assessments as it marks the point where rivers hydraulically connect to adjacent floodplains. Management of dams and water consumption pose a risk to floodplains and riparian wetlands as flood volumes are significantly reduced. The thesis highlights that almost one-third of 93 selected Ramsar sites are seriously affected by modified inundation patterns today, and in the future, inundation patterns are very likely to be further impaired as a result of new major dam initiatives and climate change. Global warming has been identified as a major threat to river flow regimes as rising temperatures, declining snow cover, changing precipitation patterns and increasing climate variability are expected to seriously modify river flow regimes in the future. Flow regimes in all climate zones will be affected, in particular the polar zone (Northern Scandinavia) with higher river flows during the year and higher flood peaks in spring. On the other side, river flows in the Mediterranean are likely to be even more intermittent in the future because of strong reductions in mean summer precipitation as well as a decrease in winter precipitation, leading to an increasing number of zero flow events creating isolated pools along the river and transitions from lotic to lentic waters. As a result, strong impacts on river ecosystem integrity can be expected. Already today, large amounts of water are withdrawn in this region for agricultural irrigation and climate change is likely to exacerbate the current situation of water shortages.