956 resultados para Cellular and molecular analyses
Resumo:
Mounting an effective response to tissue damage requires a concerted effort from a number of systems, including both the immune and nervous systems. Immune-responsive blood cells fight infection and clear debris from damaged tissues, and specialized pain receptors become hypersensitive to promote behavior that protects the damaged area while it heals. To uncover the cellular and molecular mechanisms underlying these processes, we have developed a genetically tractable invertebrate model of damage-induced inflammation and pain hypersensitivity using Drosophila larvae. To study wound-induced inflammation, we generated transgenic larvae with fluorescent epidermal cells and blood cells (hemocytes). Using live imaging, we monitored the circulatory dynamics of hemocytes and the methods by which they accumulate at epidermal wounds. We found that circulating hemocytes attach to wound sites directly from circulation, a mechanism once thought to work exclusively in species with a closed circulatory system. To study damage-induced pain hypersensitivity, we developed a “sunburn assay” and found that larvae have a lowered pain threshold (allodynia) and an exaggerated response to noxious stimuli (hyperalgesia) following UV damage. We screened for genes required for hypersensitivity in pain receptors (nociceptors), and discovered a number of novel mediators that have well conserved mammalian homologs. Together, these results help us to understand how various cell types in the immune and nervous systems both detect and respond to tissue damage.
Resumo:
Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically assess advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we review a multiscale, i.e., from the molecular to the gross tumor scale, mathematical and computational "first-principle" approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as a phenotype-diagnostic tool to predict collective and individual tumor cell invasion of surrounding tissue. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior.
Resumo:
Xenopus ARVCF (xARVCF), a member of p120-catenin subfamily, binds cadherin cytoplasmic domains to enhance cadherin metabolic stability, or when dissociated, modulates Rho-family GTPases. We previously found that xARVCF binds directly to Xenopus KazrinA (xKazrinA), a widely expressed, conserved protein that bears little homology to established protein families. xKazrinA is also known to influence keratinocyte proliferation-differentiation and cytoskeletal activity. In my study, I first evaluated the expression pattern of endogenous Kazrin RNA and protein in Xenopus embryogenesis as well as in adult tissues. We then collaboratively predicted the helical structure of Kazrin’s coiled-coil domain, and I obtained evidence of Kazrin’s dimerization/oligomerization. In considering the intracellular localization of the xARVCF-catenin:xKazrin complex, I did not resolve xKazrinA in a larger ternary complex with cadherin, nor did I detect its co-precipitation with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin. This suggested a potential means by which xKazrinA localizes to cell-cell junctions, and indeed, biochemical assays confirmed a ternary xARVCF:xKazrinA:xβ2-spectrin complex. Functionally, I demonstrated that xKazrin stabilizes cadherins by negatively modulating the RhoA small-GTPase. I further revealed that xKazrinA binds to p190B RhoGAP (an inhibitor of RhoA), and enhances p190B’s association with xARVCF. Supporting their functional interaction in vivo, Xenopus embryos depleted of xKazrin exhibited ectodermal shedding, a phenotype that could be rescued with exogenous xARVCF. Cell shedding appeared to be caused by RhoA activation, which consequently altered actin organization and cadherin function. Indeed, I was capable of rescuing Kazrin depletion with ectopic expression of p190B RhoGAP. In addition, I obtained evidence that xARVCF and xKazrin participate in craniofacial development, with effects observed upon the neural crest. Finally, I found that xKazrinA associates further with delta-catenin and p0071-catenin, but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin sub-family. Taken together, my study supports Kazrin’s essential role in development, and reveals KazrinA’s biochemical and functional association with ARVCF-catenin, spectrin and p190B RhoGAP.
Resumo:
Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to astrogliosis. Our results reveal a novel role of p44/WDR77 in astrocytes, which may explain the well-documented role of androgens in suppression of astrogliosis. While many of detailed mechanisms of astrocyte activation remain to be elucidated, a number pathways have been implicated in astrocyte activation including p21Cip1 and the NF-kB pathway. Astrocytic activation induced by p44/WDR77 gene deletion was associated with a significant increase of p21Cip1 expression and NF-kB activation characterized by p65 nuclear localization. We found that down-regulation of p21Cip1 expression inhibited astrocyte activation induced by the p44/WDR77 deletion and was accompanied by a decreased p65 nuclear localization. While p21Cip1 role in astrocyte activation and NF-kB activation is not well understood, studies of other cell cycle regulators have implicated cell cycle control systems as modulators of astrocyte activation, thus p21Cip1 could induce secondary effect to induce p65 nuclear localization. However, p65 knockdown completely relieved the inhibition of astrocyte growth induced by the p44/WDR77 deletion, while p21Cip1 knockdown only partially recovered this inhibition. Thus, NF-kB activity performs additional regulatory actions not mediated by p21Cip1. These analyses imply that p4/WDR77 suppresses astrocyte activation through modulating p21Cip1 expression and NF-kB activation.
Resumo:
Neuromodulation is essential to many functions of the nervous system. In the simple gastropod mollusk Aplysia californica, neuromodulation of the circuits for the defensive withdrawal reflexes has been associated with several forms of learning. In the present work, the neurotransmitters and neural circuitry which contribute to the modulation of the tail-siphon withdrawal reflex were examined.^ A recently-identified neuropeptide transmitter, buccalin A was found to modulate the biophysical properties of the sensory neurons that mediate the reflex. The actions of buccalin A on the sensory neurons were compared with those of the well-characterized modulatory transmitter serotonin, and convergence and divergence in the actions of these two transmitters were evaluated. Buccalin A dramatically increased the excitability of sensory neurons and occluded further enhancement of excitability by serotonin. Buccalin A produced no significant change in spike duration, and it did not block serotonin-induced spike broadening. Voltage-clamp analysis revealed the currents that may be involved in the effects on spike duration and excitability. Buccalin A decreased an outward current similar to the S-K$\sp+$ current (I$\sb{\rm K,S}$). Buccalin A appeared to occlude further modulation of I$\sb{\rm K,S}$ by serotonin, but did not block serotonin-induced modulation of the voltage-dependent delayed rectifier K$\sp+$ current (I$\sb{\rm K,V}$). These results suggest that buccalin A converges on some, but not all, of the same subcellular modulatory pathways as serotonin.^ In order to begin to understand neuromodulation in a more physiological context for the tail-siphon withdrawal reflex, the modulatory circuitry for the tail-withdrawal circuit was examined. Mechanoafferent neurons in the J cluster of the cerebral ganglion were identified as elements of a modulatory circuit for the reflex. Excitatory and inhibitory connections were observed between the J cells and the pleural sensory neurons, the tail motor neurons, and several classes of interneurons for the tail-siphon withdrawal circuit. The J cells produced both fast and slow PSPs in these neurons. Of particular interest was the ability of the J cells to produce slow EPSPs in the pleural sensory neurons. These slow EPSPs were associated with an increase in the excitability of the sensory neurons. The J cells appear to mediate both sensory and modulatory inputs to the circuit for the tail-siphon withdrawal reflex from the anterior part of the animal. ^
Resumo:
Female inmates make up the fastest growing segment in our criminal justice system today. The rapidly increasing trend for female prisoners calls for enhanced efforts to strategically plan the correctional facilities that address the needs of this growing population, and to work with communities to prevent crime in women. The incarcerated women in the U.S. have an estimated 145,000 minor children who are predisposed to unique psychosocial problems as a result of parental incarceration.^ This study examined the patterns of care and outcomes for pregnant inmates and their infants in Texas state prisons between 1994 and 1996. The study population consists of 202 pregnant inmates who delivered in a 2-year period, and a randomly sampled comparison cohort of 804 women from general Texas population, matched on race and educational levels. Both quantitative and qualitative data were used to elucidate the inmates' risk-factor profile, delivery/birth outcomes, and the patterns of care during pregnancy. The continuity-of-care issues for this population were also explored.^ Epidemiologic data were derived from multiple record systems to establish the comparison between two cohorts. A significantly great proportion of the inmates have prior lifestyle risk-factors (smoking, alcohol, and illicit drug abuse), poorer health status, and worse medical history. However, most of these existing risk-factors seem to show little manifestation in their current pregnancy. On the basis of maternal labor/delivery outcome and a number of neonatal indicators, this study found some evidence of a better pregnancy outcome for the inmate cohort when compared to the comparison group. Some possible explanations of this paradox were discussed. Seventeen percent of inmates gave birth to infants with suspected congenital syphilis. The placement patterns for the infants' care immediately after birth were elucidated.^ In addition to the quantitative data, an ethnographic approach was used to collect qualitative data from a subset of the inmate cohort (n = 20) and 12 care providers. The qualitative data were analyzed for their contents and themes, giving rise to a detailed description of the inmates' pregnancy experience. Eleven themes emerged from the study's thematic analysis, which provides the context for interpreting the epidemiologic data.^ Meaningful findings in this study were presented in a three-dimensional matrix to shed light on the apparent relationship between outcome indicators and their potential determinants. The suspected "linkages" between the outcome and their determinants can be used to generate hypotheses for future studies. ^
Resumo:
An important goal in the study of long-term memory is to understand the signals that induce and maintain the underlying neural alterations. In Aplysia, long-term sensitization of defensive reflexes has been examined in depth as a simple model of memory. Extensive studies of sensory neurons (SNs) in Aplysia have led to a cellular and molecular model of long-term memory that has greatly influenced memory research. According to this model, induction of long-term memory in Aplysia depends upon serotonin (5-HT) release and subsequent activation of the cAMP-PKA pathway in SNs. The evidence supporting this model mainly came from studies of long-term synaptic facilitation (LTF) using dissociated (and therefore axotomized) cells growing in culture. However, studies in more intact preparations have produced complex and discrepant results. Because these SNs function as nociceptors, and display similar alterations (long-term hyperexcitability [LTH], LTF, and growth) in models of memory and nerve injury, this study examined the roles of 5-HT and the cAMP-PKA pathway in the induction and expression of long-term, injury-related LTH and LTF in Aplysia SNs. ^ The results presented here suggest that 5-HT is not a primary signal for inducing LTH (and perhaps LTF) in Aplysia SNs. Prolonged treatment with 5-HT failed to induce LTH of Aplysia SNs in either ganglia or dissociated-cell preparations. Treatment with a 5-HT antagonist, methiothepin, during noxious nerve stimulation failed to reduce 24 hr LTH. Furthermore, while 5-HT can induce LTF of SN synapses, this LTF appears to be an indirect effect of 5-HT on other cells. When neural activity was suppressed by elevating divalent cations or by using tetrodotoxin (TTX), 5-HT failed to induce LTF. Unlike LTF, LTH of the SNs could not be produced, even when 5-HT treatment occurred in normal artificial sea water (ASW), suggesting that LTH and LTF are likely to depend on different signals for induction. However, methiothepin reduced the later expression of LTH induced by nerve stimulation, suggesting that 5-HT contributes to the maintenance of LTH in Aplysia SNs.n of somata from the ganglion (which axotomizes SNs) or crushing peripheral n. ^ In summary, this study found that 5-HT and the cAMP-PKA pathway are not involved in the induction of long-term, injury-related LTH of Aplysia SNs, but persistent release of 5-HT and persistent PKA activity contribute to the maintenance of LTH induced by injury. (Abstract shortened by UMI.)^
Resumo:
Human pigmentation is a complex trait with the observed variation caused by the varied production of eumelanin (brown/black melanins) and phaeomelanin (red/yellow melanins) by the melanocytes. The melanocortin 1 receptor (MC1R), a G protein-coupled receptor expressed in the melanocytes, is a regulator eu- and phaeomelanin synthesis, and MC1R mutations causing skin and coat color changes are known in many mammals. To understand the role of MC1R in human pigmentation variation, I have sequenced the MC1R gene in 121 individuals sampled from world populations. In addition, I have sequenced the MC1R gene in common and pygmy chimpanzees, gorilla, orangutan, and baboon to study the evolution of MC1R and to infer the ancestral human MC1R sequence. The ancestral MC1R sequence is observed in all 25 African individuals studied, but at lower frequencies in the other populations examined, especially in East and Southeast Asians. The Arg163Gln variant is absent in the Africans studied, almost absent in Europeans, and at a low frequency in Indians, but is at an exceptionally high frequency (70%) in East and Southeast Asians. To further evaluate the role of MC1R variants in human pigmentation variation, I have combined these molecular evolution and population studies with functional assays on MC1R variants and primate MC1Rs. ^
Resumo:
Prematurely born babies are often treated with glucocorticoids. We studied the consequences of an early postnatal and short dexamethasone treatment (0.1-0.01 microg/g, days 1-4) on lung development in rats, focusing on its influence on peaks of cell proliferation around day 4 and of programmed cell death at days 19-21. By morphological criteria, we observed a dexamethasone-induced premature maturation of the septa (day 4), followed by a transient septal immatureness and delayed alveolarization leading to complete rescue of the structural changes. The numbers of proliferating (anti-Ki67) and dying cells (TdT-mediated dUTP nick end labeling) were determined and compared with controls. In dexamethasone-treated animals, both the peak of cell proliferation and the peak of programmed cell death were reduced to baseline, whereas the expression of tissue transglutaminase (transglutaminase-C), another marker for postnatal lung maturation, was not significantly altered. We hypothesize that a short neonatal course of dexamethasone leads to severe but transient structural changes of the lung parenchyma and influences the balance between cell proliferation and cell death even in later stages of lung maturation.
Resumo:
Background:Erythropoiesis-stimulating agents (ESAs) reduce the need for red blood cell transfusions; however, they increase the risk of thromboembolic events and mortality. The impact of ESAs on quality of life (QoL) is controversial and led to different recommendations of medical societies and authorities in the USA and Europe. We aimed to critically evaluate and quantify the effects of ESAs on QoL in cancer patients.Methods:We included data from randomised controlled trials (RCTs) on the effects of ESAs on QoL in cancer patients. Randomised controlled trials were identified by searching electronic data bases and other sources up to January 2011. To reduce publication and outcome reporting biases, we included unreported results from clinical study reports. We conducted meta-analyses on fatigue- and anaemia-related symptoms measured with the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) and FACT-Anaemia (FACT-An) subscales (primary outcomes) or other validated instruments.Results:We identified 58 eligible RCTs. Clinical study reports were available for 27% (4 out of 15) of the investigator-initiated trials and 95% (41 out of 43) of the industry-initiated trials. We excluded 21 RTCs as we could not use their QoL data for meta-analyses, either because of incomplete reporting (17 RCTs) or because of premature closure of the trial (4 RCTs). We included 37 RCTs with 10 581 patients; 21 RCTs were placebo controlled. Chemotherapy was given in 27 of the 37 RCTs. The median baseline haemoglobin (Hb) level was 10.1 g dl(-1); in 8 studies ESAs were stopped at Hb levels below 13 g dl(-1) and in 27 above 13 g dl(-1). For FACT-F, the mean difference (MD) was 2.41 (95% confidence interval (95% CI) 1.39-3.43; P<0.0001; 23 studies, n=6108) in all cancer patients and 2.81 (95% CI 1.73-3.90; P<0.0001; 19 RCTs, n=4697) in patients receiving chemotherapy, which was below the threshold (⩾3) for a clinically important difference (CID). Erythropoiesis-stimulating agents had a positive effect on anaemia-related symptoms (MD 4.09; 95% CI 2.37-5.80; P=0.001; 14 studies, n=2765) in all cancer patients and 4.50 (95% CI 2.55-6.45; P<0.0001; 11 RCTs, n=2436) in patients receiving chemotherapy, which was above the threshold (⩾4) for a CID. Of note, this effect persisted when we restricted the analysis to placebo-controlled RCTs in patients receiving chemotherapy. There was some evidence that the MDs for FACT-F were above the threshold for a CID in RCTs including cancer patients receiving chemotherapy with Hb levels below 12 g dl(-1) at baseline and in RCTs stopping ESAs at Hb levels above 13 g dl(-1). However, these findings for FACT-F were not confirmed when we restricted the analysis to placebo-controlled RCTs in patients receiving chemotherapy.Conclusions:In cancer patients, particularly those receiving chemotherapy, we found that ESAs provide a small but clinically important improvement in anaemia-related symptoms (FACT-An). For fatigue-related symptoms (FACT-F), the overall effect did not reach the threshold for a CID.British Journal of Cancer advance online publication, 17 April 2014; doi:10.1038/bjc.2014.171 www.bjcancer.com.
Resumo:
Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cows and in Mediterranean buffaloes. Genotype B (GTB) is contagious in dairy cows and may occur in up to 87% of cows of a dairy herd. It was the aim of this study to evaluate genotypes present, clinical outcomes, and prevalence of Staph. aureus in milk samples of primiparous Mediterranean dairy buffaloes. Two hundred composite milk samples originating from 40 primiparous buffaloes were collected from May to June 2012, at d 10, 30, 60, 90, and 150 d in milk (DIM) to perform somatic cell counts and bacteriological cultures. Daily milk yields were recorded. Before parturition until 40 to 50 DIM, all primiparous animals were housed separated from the pluriparous animals. Milking was performed in the same milking parlor, but the primiparous animals were milked first. After 50 DIM, the primiparous were mixed with the pluriparous animals, including the milking procedure. Individual quarter samples were collected from each animal, and aliquots of 1 mL were mixed and used for molecular identification and genotyping of Staph. aureus. The identification of Staph. aureus was performed verifying the presence of nuc gene by nuc gene PCR. All the nuc-positive isolates were subjected to genotype analysis by means of PCR amplification of the 16S-23S rRNA intergenic spacer region and analyzed by a miniaturized electrophoresis system. Of all 200 composite samples, 41 (20.5%) were positive for Staph. aureus, and no genotype other than GTB was identified. The prevalence of samples positive for Staph. aureus was 0% at 10 DIM and increased to a maximum of 22/40 (55%) at 90 DIM. During the period of interest, 14 buffaloes tested positive for Staph. aureus once, 6 were positive twice, and 5 were positive 3 times, whereas 15 animals were negative at every sampling. At 90 and 150 DIM, 7 (17.5%) and 3 buffaloes (7.5%), respectively, showed clinical mastitis (CM), and only 1 (2.5%) showed CM at both samplings. At 60, 90, and 150 DIM, 1 buffalo was found with subclinical mastitis at each sampling. At 30, 60, 90, and 150 DIM, 2.5 (1/40), 22.5 (9/40), 35 (14/40), and 10% (4/40) were considered affected by intramammary infection, respectively. Buffaloes with CM caused by Staph. aureus had statistically significantly higher mean somatic cell count values (6.06 ± 0.29, Log10 cells/mL ± standard deviation) and statistically significantly lower mean daily milk yields (7.15 ± 1.49, liters/animal per day) than healthy animals (4.69 ± 0.23 and 13.87 ± 2.64, respectively), buffaloes with IMI (4.82 ± 0.23 and 11.16 ± 1.80, respectively), or with subclinical mastitis (5.47 ± 0.10 and 10.33 ± 0.68, respectively). Based on our knowledge, this is the first time that Staph. aureus GTB has been identified in milk samples of dairy Mediterranean buffaloes.
Resumo:
Systematic reviews and meta-analyses allow for a more transparent and objective appraisal of the evidence. They may decrease the number of false-negative results and prevent delays in the introduction of effective interventions into clinical practice. However, as for any other tool, their misuse can result in severely misleading results. In this article, we discuss the main steps that should be taken when conducting systematic reviews and meta-analyses, namely the preparation of a review protocol, identification of eligible trials, and data extraction, pooling of treatment effects across trials, investigation of potential reasons for differences in treatment effects across trials, and complete reporting of the review methods and findings. We also discuss common pitfalls that should be avoided, including the use of quality assessment tools to derive summary quality scores, pooling of data across trials as if they belonged to a single large trial, and inappropriate uses of meta-regression that could result in misleading estimates of treatment effects because of regression to the mean or the ecological fallacy. If conducted and reported properly, systematic reviews and meta-analyses will increase our understanding of the strengths and weaknesses of the available evidence, which may eventually facilitate clinical decision making.
Resumo:
Aberrant glycosylation is a key feature of malignant transformation and reflects epigenetic and genetic anomalies among the multitude of molecules involved in glycan biosynthesis. Although glycan biosynthesis is not template bound, altered tumor glycosylation is not random, but associated with common glycosylation patterns. Evidence suggests that acquisition of distinct glycosylation patterns evolves from a ‘microevolutionary’ process conferring advantages in terms of tumor growth, tumor dissemination, and immune escape. Such glycosylation modifications also involve xeno- and hypersialylation. Xeno-autoantigens such as Neu5Gc-gangliosides provide potential targets for immunotherapy. Hypersialylation may display ‘enhanced self’ to escape immunosurveillance and involves several not mutually exclusive inhibitory pathways that all rely on protein–glycan interactions. A better understanding of tumor ‘glycan codes’ as deciphered by lectins, such as siglecs, selectins, C-type lectins and galectins, may lead to novel treatment strategies, not only in cancer, but also in autoimmune disease or transplantation.