940 resultados para Canning Basin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground penetrating radar (GPR) was used to determine peat basin geometry and the spatial distribution of free-phase biogenic gasses in two separate units of a northern peatland (Central and Southern Unit of Caribou Bog, Maine). The Central Unit is characterized by a deep basin structure (15 m maximum depth) and a raised (eccentric) bog topographic profile (up to 2 m topographic variation). Here numerous regions of electromagnetic (EM) wave scattering are considered diagnostic of the presence of extensive free-phase biogenic gas. In contrast, the Southern Unit is shallower (8 m maximum depth) and has a slightly convex upwards bog profile (less than 1 m topographic variation), and areas of EM wave scattering are notably absent. The biogenic gas zones interpreted from GPR in the Central Unit are associated with: (1) wooded heath vegetation at the surface, (2) open pools at the surface, (3) high water table elevations near the center of the basin, and (4) a region of overpressure (at approximately 5 m depth) immediately below the zone of free-phase gas accumulation. The latter suggests (1) a transient pressure head associated with low hydraulic conductivity resulting from the biogenic gasses themselves or confining layers in the peat that restrict both gas release and groundwater flow and/or (2) overpressure in the peat column as a result of the gas buildup itself. In contrast, the Southern Unit, where zones of EM scattering are absent, is characterized by: (1) predominantly shrub vegetation, (2) a lack of open pools, (3) only minor variations (less than 1 m) in water table elevation throughout the entire unit; and (4) generally upward groundwater flow throughout the basin. The results illustrate the nonuniformity of free-phase biogenic gas distribution at the peat basin scale and provide insights into the processes and controls associated with CH4 and CO2 accumulation in peatlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I modeled the cumulative impact of hydroelectric projects with and without commercial fishing weirs and water-control dams on the production, survival to the sea, and potential fecundity of migrating female silver-phase American eels, Anguilla rostrata in the Kennebec River basin, Maine, This river basin has 22 hydroelectric projects, 73 water-control dams, and 15 commercial fishing weir sites. The modeled area included an 8,324 km(2) segment of the drainage area between Merrymeeting Bay and the upper limit of American eel distribution in the basin. One set of input,, (assumed or real values) concerned population structure (Le., population density and sex ratio changes throughout the basin, female length-class distribution, and drainage area between dams), Another set concerned factors influencing survival and potential fecundity of migrating American eels (i.e., pathway sequences through projects, survival rate per project by length-class. and length-fecundity relationship). Under baseline conditions about 402,400 simulated silver female American eels would be produced annually reductions in their numbers due to dams and weirs would reduce the realized fecundity (i.e., the number of eggs produced by all females that survived the migration). Without weirs or water-control dams, about 63% of the simulated silverphase American eels survived their freshwater spawning migration run to the sea when the survival rate at each hydroelectric dam was 9017, 40% survived at 80% survival per dam, and 18% survived at 60% survival per dam. Removing the lowermost hydroelectric dam on the Kennebec River increased survival by 6.0-7.6% for the basin. The efficient commercial weirs reduced survival to the sea to 69-76%( of what it would have been without weirs', regardless of survival rates at hydroelectric dams. Water-control dams had little impact on production in this basin because most were located in the upper reaches of tributaries. Sensitivity analysis led to the conclusion that small changes in population density and female length distribution had greater effects on survival and realized fecundity than similar changes in turbine survival rate. The latter became more important as turbine survival rate decreased. Therefore, it might be more fruitful to determine population distribution in basins of interest than to determine mortality rate at each hydroelectric project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex effects of light, nutrients and temperature lead to a variable carbon to chlorophyll (C:Chl) ratio in phytoplankton cells. Using field data collected in the Equatorial Pacific, we derived a new dynamic model with a non-steady C:Chl ratio as a function of irradiance, nitrate, iron, and temperature. The dynamic model is implemented into a basin-scale ocean circulation-biogeochemistry model and tested in the Equatorial Pacific Ocean. The model reproduces well the general features of phytoplankton dynamics in this region. For instance, the simulated deep chlorophyll maximum (DCM) is much deeper in the western warm pool (similar to 100 m) than in the Eastern Equatorial Pacific (similar to 50 m). The model also shows the ability to reproduce chlorophyll, including not only the zonal, meridional and vertical variations, but also the interannual variability. This modeling study demonstrates that combination of nitrate and iron regulates the spatial and temporal variations in the phytoplankton C:Chl ratio in the Equatorial Pacific. Sensitivity simulations suggest that nitrate is mainly responsible for the high C:Chl ratio in the western warm pool while iron is responsible for the frontal features in the C:Chl ratio between the warm pool and the upwelling region. In addition, iron plays a dominant role in regulating the spatial and temporal variations of the C:Chl ratio in the Central and Eastern Equatorial Pacific. While temperature has a relatively small effect on the C:Chl ratio, light is primarily responsible for the vertical decrease of phytoplankton C:Chl ratio in the euphotic zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DAURE (Determination of the Sources of Atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean) was a multidisciplinary international field campaign aimed at investigating the sources and meteorological controls of particulate matter in the Western Mediterranean Basin (WMB). Measurements were simultaneously performed at an urban-coastal (Barcelona, BCN) and a rural-elevated (Montseny, MSY) site pair in NE Spain during winter and summer. State-of-the-art methods such as 14C analysis, proton-transfer reaction mass spectrometry, and high-resolution aerosol mass spectrometry were applied for the first time in the WMB as part of DAURE. WMB regional pollution episodes were associated with high concentrations of inorganic and organic species formed during the transport to inland areas and built up at regional scales. Winter pollutants accumulation depended on the degree of regional stagnation of an air mass under anticyclonic conditions and the planetary boundary layer height. In summer, regional recirculation and biogenic secondary organic aerosols (SOA) formation mainly determined the regional pollutant concentrations. The contribution from fossil sources to organic carbon (OC) and elemental carbon (EC) and hydrocarbon-like organic aerosol concentrations were higher at BCN compared with MSY due to traffic emissions. The relative contribution of nonfossil OC was higher at MSY especially in summer due to biogenic emissions. The fossil OC/EC ratio at MSY was twice the corresponding ratio at BCN indicating that a substantial fraction of fossil OC was due to fossil SOA. In winter, BCN cooking emissions were identified as an important source of modern carbon in primary organic aerosol.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hellas basin is a large impact basin situated in the southern highlands of Mars. The north-western part of the basin has the lowest elevation (-7.5 km) on the planet and contains a possibly unique terrain type, which we informally call “banded terrain”. The banded terrain is made up of smooth-looking banded deposits that display signs of viscous behavior and a paucity of superimposed impact craters. In this study, we use newly acquired high spatial resolution images from the High Resolution Imaging Science Experiment (HiRISE) in addition to existing datasets to characterize the geomorphology, the morphometry and the architecture of the banded terrain. The banded terrain is generally confined to the NW edge of the Alpheus Colles plateau. The individual bands are ~3–15 km-long, ~0.3 km-wide and are separated by narrow inter-band depressions, which are ~65 m-wide and ~10 m-deep. The bands display several morphologies that vary from linear to concentric forms. Morphometric analysis reveals that the slopes along a given linear or lobate band ranges from 0.5° to 15° (average~6°), whereas the concentric bands are located on flatter terrain (average slope~2–3°). Crater-size frequency analysis yields an Amazonian-Hesperian boundary crater retention age for the terrain (~3 Gyr), which together, with the presence of very few degraded craters, either implies a recent emplacement, resurfacing, or intense erosion. The apparent sensitivity to local topography and preference for concentrating in localized depressions is compatible with deformation as a viscous fluid. In addition, the bands display clear signs of degradation and slumping at their margins along with a suite of other features that include fractured mounds, polygonal cracks at variable size-scales, and knobby/hummocky textures. Together, these features suggest an ice-rich composition for at least the upper layers of the terrain, which is currently being heavily modified through loss of ice and intense weathering, possibly by wind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnitudes of the largest known floods of the River Rhine in Basel since 1268 were assessed using a hydraulic model drawing on a set of pre-instrumental evidence and daily hydrological measurements from 1808. The pre-instrumental evidence, consisting of flood marks and documentary data describing extreme events with the customary reference to specific landmarks, was “calibrated” by comparing it with the instrumental series for the overlapping period between the two categories of evidence (1808–1900). Summer (JJA) floods were particularly frequent in the century between 1651–1750, when precipitation was also high. Severe winter (DJF) floods have not occurred since the late 19th century despite a significant increase in winter precipitation. Six catastrophic events involving a runoff greater than 6000 m 3 s-1 are documented prior to 1700. They were initiated by spells of torrential rainfall of up to 72 h (1480 event) and preceded by long periods of substantial precipitation that saturated the soils, and/or by abundant snowmelt. All except two (1999 and 2007) of the 43 identified severe events (SEs: defined as having runoff > 5000 and < 6000 m 3 s -1) occurred prior to 1877. Not a single SE is documented from 1877 to 1998. The intermediate 121-year-long “flood disaster gap” is unique over the period since 1268. The effect of river regulations (1714 for the River Kander; 1877 for the River Aare) and the building of reservoirs in the 20th century upon peak runoff were investigated using a one-dimensional hydraulic flood-routing model. Results show that anthropogenic effects only partially account for the “flood disaster gap” suggesting that variations in climate should also be taken into account in explaining these features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper sheds light on an unusual political influence mechanism, i.e. the influence of a non-EU member state on agendas and policies at the level of the EU and EU members states. Borrowing both from the literatures on policy diffusion as well as on the influence of small member states in EU decision-making, we argue that such an influence is fostered by both structural and agency-related factors. We illustrate this potential influence with a case study on the regulation of micropollutants in waterbodies. Adopting a mixed-method approach, we show that the upstream location of Switzerland, its integration into transnational networks as well as joint water basin institutions provides the country with structural opportunities to diffuse policy innovation to the EU’s policy agenda and member states’ policies. In addition, agency-related factors matter as the EU or member states can point to Switzerland as a successful example or pioneer, especially since the Swiss policy is in line with an overall EU strategy on reducing negative impacts of chemicals on humans and the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesized published data on the erosion of the Alpine foreland basin and apatite fission-track ages from the Alps to infer the erosional sediment budget history for the past 5 m.y. The data reveal that erosion of the Alpine foreland basin is highest in front of the western Alps (between 2 and 0.6 km) and decreases eastward over a distance of 700 km to the Austrian foreland basin (similar to 200 m). For the western Alps, erosion rates are >0.6 km/m.y., while erosion rates for the eastern foreland basin and the adjacent eastern Alps are <0.1 km/m.y., except for a small-scale signal in the Tauern Window. The results yield a large ellipsoidal, orogen-crossing pattern of erosion, centered along the western Alps. We suggest that accelerated erosion of the western Alps and their foreland basin occurred in response to regional-scale surface uplift, related to lithospheric unloading of the Eurasian slab along the Eurasian-Adriatic plate boundary. While we cannot rule out recent views that global climate change led to substantial erosion of the European Alps since 5 Ma, we postulate that regional-scale tectonic processes have driven erosion during this time, modulated by an increased erosional flux in response to Quaternary glaciations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the important role that pastoralism plays in supporting rural livelihoods, national economy and diverse ecological services, its capacity to adapt to change is facing many challenges including adverse policy, pastoral-farmer conflicts and recently, adverse climate change. The recurring conflicts between the two groupings are rather a result of a reaction by a community which has been marginalized over the years. A survey to analyze conflicts, institutional frameworks, policies, laws and regulations governing NRs utilization by pastoral and farmers was conducted in the Lake Rukwa Basin in 2008. The study noted violent conflicts and their causes, including the scarcity of NRs, poor local institutional frameworks and deeper socio-cultural aspects among pastoralists and farmers. The conflicts have become major impediments to the developmental activities in the study areas, to a degree that requires intervention. This, therefore, calls for reorganization of local institutional framework, policies, laws and regulations and participatory planning and co-management of NRs as part of conflicts management and sustainable utilization of them. Key words: Policies, Natural Resources, Conflicts, Pastoralism, Institutional frameworks