922 resultados para Callosal Neurons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do neurons develop, control, and maintain their electrical signaling properties in spite of ongoing protein turnover and perturbations to activity? From generic assumptions about the molecular biology underlying channel expression, we derive a simple model and show how it encodes an "activity set point" in single neurons. The model generates diverse self-regulating cell types and relates correlations in conductance expression observed in vivo to underlying channel expression rates. Synaptic as well as intrinsic conductances can be regulated to make a self-assembling central pattern generator network; thus, network-level homeostasis can emerge from cell-autonomous regulation rules. Finally, we demonstrate that the outcome of homeostatic regulation depends on the complement of ion channels expressed in cells: in some cases, loss of specific ion channels can be compensated; in others, the homeostatic mechanism itself causes pathological loss of function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prototype neuro-stimulus chip for sub-retinal implants in blind patients affected by Age-related Macular Degeneration (AMD) or Retinitis Pigmentosa (RP) is presented in this paper. This retinal prosthetic chip was designed to replace the degenerated photoreceptor cells, and in order to stimulate directly the remaining healthy layers of retinal neurons. The current stimulus circuits are monolithic integrated with photodiodes (PD) array, which can convert the illumination on the eyes into bi-phasic electrical pulses. In addition, a novel charge cancellation circuit is used to discharge the electrodes for medical safty. The prototype chip is designed and fabricated in HJTC 0.18 mu m N-well CMOS 1P6M Mix-signal process, with a +/- 2.5 V dual voltage power supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that have documented neurological effects in children exposed in utero. To better define neuronally linked molecular targets during early development, zebrafish embryos were exposed to Aroclor 1254, a mixture of PCB congeners that are common environmental contaminants. Microarray analysis of the zebrafish genome revealed consistent significant changes in 38 genes. Of these genes, 55% (21) are neuronally related. One gene that showed a consistent 50% reduction in expression in PCB-treated embryos was heat-shock protein 70 cognate (Hsc70). The reduction in Hsc70 expression was confirmed by real-time polymerase chain reaction (PCR), revealing a consistent 30% reduction in expression in PCB-treated embryos. Early embryonic exposure to PCBs also induced structural changes in the ventro-rostral cluster as detected by immunocytochemistry. In addition, there was a significant reduction in dorso-rostral neurite outgrowth emanating from the RoL1 cell cluster following PCB exposure. The serotonergic neurons in the developing diencephalon showed a 34% reduction in fluorescence when labeled with a serotonin antibody following PCB exposure, corresponding to a reduction in serotonin concentration in the neurons. The total size of the labeled neurons was not significantly different between treated and control embryos, indicating that the development of the neurons was not affected, only the production of serotonin within the neurons. The structural and biochemical changes in the developing central nervous system following early embryonic exposure to Aroclor 1254 may lead to alterations in the function of the affected regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

一. 快速扫视系统对瞳孔对光反射系统的调制作用快速扫视系统是研究运动神经控制的一个很好的模型。瞳孔对光反射是由进入视网膜的光亮度的增加而引起的瞳孔的收缩。之前的实验研究表明这两个系统都是开放的系统。但是对快速扫视系统是否对瞳孔对光反射系统有调制作用并没有研究过。本实验研究了注视状态和快速扫视状态下的瞳孔对光反射的潜伏期和瞳孔直径的变化。结果显示在注视状态下的和出现快速扫视时瞳孔对光反射的潜伏期表现出显著不同。外展和内收会引起瞳孔对光反射的潜伏期和瞳孔相对收缩率不同变化。在出现外展运动时,瞳孔对光反射的潜伏期显著下降,而出现内收运动时,瞳孔对光反射的潜伏期表现出显著增加。而瞳孔相对收缩率在出现两种运动时与注视状态下相比也发生不同的变化:外展运动引起瞳孔对光反射的瞳孔相对收缩率的增加,而内收运动引起瞳孔相对收缩率的减少。尽管快速扫视本身会引起瞳孔的收缩,但是引起的瞳孔收缩的变化不等于在出现快速扫视时的瞳孔对光反射的瞳孔直径的变化,这个结果说明在出现快速扫视时的瞳孔对光反射的变化并不是来源于光效应和快速扫视效应的简单叠加。基于快速扫视出现时间的进一步分析说明在瞳孔对光反射周期内不同时间出现两种快速扫视引起的瞳孔对光反射的潜伏期和瞳孔相对收缩率的变化不同。这些结果说明两个系统是有相互作用的,快速扫视系统可以调节瞳孔对光反射系统。关键词:快速扫视 瞳孔对光反射 调制二. 麻醉状态下纳洛酮对吗啡依赖大鼠的岛叶神经元的自发放的影响药物成瘾是药物长期作用于脑而产生的一种慢性复吸性脑疾病。之前有研究表明岛叶参与成瘾的过程。本实验以CPP为检测手段,检测实验大鼠是否产生吗啡依赖(吗啡给药方式为隔天给药,腹腔注射(10mg/kg),共三次。然后采用四合一电极对纳洛酮诱发戒断的麻醉大鼠的岛叶和体感皮层进行细胞外电生理记录。与对照组相比,在记录的神经元中,被激活的神经元的所占比例(71.43%)远远大于对照组。将对照组和实验组的发放显著增加的神经元在给药前后的相对平均发放进行比较,两组神经元发放增加并没有显著差异。采用卡方检验比较了对照组和实验组的发放模式,结果显示两组发放模式存在显著差异。说明岛叶参与的方式可能是有更多数目的神经元参与,而不是通过改变单个神经元的发放参与。这也在神经元水平上为岛叶参与成瘾过程提供了一个证据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major protein component of the amyloid deposition in Alzheimer's disease is a 39-43 residue peptide, amyloid beta (A beta). A beta is toxic to neurons, although the mechanism of neurodegeneration is uncertain. Evidence exists for non-B DNA conformation in the hippocampus of Alzheimer's disease brains, and A beta was reportedly able to transform DNA conformation in vitro. In this study, we found that DNA conformation was altered in the presence of A beta, and A beta induced DNA condensation in a time-dependent manner. Furthermore, A beta sheets, serving as condensation nuclei, were crucial for DNA condensation, and Cu2+ and Zn2+ ions inhibited A beta sheet-induced DNA condensation. Our results suggest DNA condensation as a mechanism of A beta toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuromelanin is a complex polymer pigment found primarily in the dopaminergic neurons of the human substantia nigra, whose composition is complex including production of dopamine auto-oxidation, glutathione and a variety of amino acid. Neuromelanin forms stable complex with iron (111). We observed that 5,6-dihydroxyindole and its ramification possessed strong ability of chelating iron (111), and they are the production of dopamine auto-oxidation under physiological pH condition. In the present Of L-Cysteine, the relative yields of electrochemical oxidation of dopamine also had strong ability of chelating iron (111). The experimental results suggest that 5,6-dihydroxyindole and 5-S-cysteineldopamine play important roles in the process of synthetic neuromelanin chelating iron (111).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson's disease is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of dopaminergic neurons in substantia nigra pars compacta, and can be modeled by the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Oxidative stress may contribute to MPTP- and Parkinson's disease-related neurodegeneration. Fucoidan is a sulfated polysaccharide extracted from brown seaweeds which possesses a wide variety of biological activities including potent antioxidative effects. Here we investigated the effect of fucoidan treatment on locomoter activities of animals, striatal dopamine and its metabolites and survival of nigral dopaminergic neurons in MPTP-induced animal model of Parkinsonism in C57/BL mice in vivo and on the neuronal damage induced by 1-methyl-4-phenylpyridinium (MPP+) in vitro, and to study the possible mechanisms. When administered prior to MPTP, fucoidan reduced behavioral deficits, increased striatal dopamine and its metabolites levels, reduced cell death, and led to a marked increase in tyrosine hydroxylase expression relative to mice treated with MPTP alone. Furthermore, we found that fucoidan inhibited MPTP-induced lipid peroxidation and reduction of antioxidant enzyme activity. In addition, pre-treatment with fucoidan significantly protected against MPP+-induced damage in MN9D cells. Taken together, these findings suggest that fucoidan has protective effect in MPTP-induced neurotoxicity in this model of Parkinson's disease via its antioxidative activity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

由于发动机光谱分析监控数据中磨损微粒种类过多,如果将这些微粒信息直接作为神经网络的输入,则存在输入层神经元过多、网络结构复杂等诸多问题。本文将粗糙集引入到发动机故障诊断中来,利用粗糙集在属性约简方面的优势,删除冗余磨损微粒,提取出重要磨损微粒,并将其作为BP神经网络的输入,建立发动机故障诊断模型。该方法降低输入层的神经元个数,简化了网络结构,缩短网络训练时间,并且由于剔除了冗余磨损微粒,减少了由该部分微粒信息不准确而带来的误差,有效提高了故障诊断的精确度。最后通过算例分析验证了相关算法和诊断模型的准确性和有效性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are a lot of differences in the neural mechanisms underlying between drug reward and natural reward despite the common neual basis. Undoubtedly, revealing the common and the different mechanisms underlying drug reward and natural reward will promote the development of research on drug addiction. Among diversified natural rewards, sex is often compared to drug because sexual reward has more similarities to drug. The mesolimbic dopamine system (VTA-NAc pathway) is a common pathway activated by natural reinforcers and addictive drugs, mediating reward, emotion and motivation under physiological conditions. The neuroadaptations taking place in the central nervous system including the mesolimbic dopamine system after repeatedly drug taking leads to persistent drug craving, Orexin, a neuropeptide produced in the lateral hypothalamus, plays an important role in reward-associated, motivated behaviors. Orexin neurons have extensive projections to the mesolimbic dopamine system. In order to further investigate the roles of orexin A in drug reward, this study examined the regulatory roles of orexin A in the VTA and NAcSh on drug reinforcement (acqusition of morphine CPP) and drug-seeking behavior (expression of morphine CPP). Moreover, the roles of orexin A on drug reward were compared with sexual reward. The main results are as follows: 1. The expression of morphine CPP was inhibited by intracerebroventricularly (i.c.v.) administered OX1R antagonist SB334867; 2. The male unconditioned sexual motivation was not affected by i.c.v. administered SB334867. However, i.c.v. given orexin A inhibited unconditioned sexual motivation in sexually high-motivated rats but did not affect sexual motivation in low-motivated rats; 3. The acquisition and expression of morphine CPP was inhibited by SB334867 microinjected into the VTA. SB334867 or orexin A injected into the NAcSh did not influence the acquisition of morphine CPP, but orexin A increased the locomotor activity in rats treated with morphine (3mg/kg); 4. SB334867 microinjected into the VTA did not affect male copulatory behavior, neither affect the acqusition of copulatory CPP; 5. The expression of copulatory CPP was associated with increased Fos protein expression in hypothalamic orexin A neurons, and SB334867 microinjected into the VTA inhibited expression of copulatory CPP. These results suggest that, (1) endogenous orexin A is not involved in male unconditioned sexual motivation, but involved in drug craving; (2) orexin A in the VTA instead of in the NAc is involved in drug reinforcement; (3) orexin A in the VTA is critical for drug-seeking behavior, but it is still unclear for the role of orexin A in the NAcSh; (4) in contrast to drug reinforcement, orexin A in the VTA is not involved in reinforcing effect of sexual reward. Orexin A plays a role both in drug-seeking behavior and in sexual reward-seeking behavior, but the different orexin A neuron populations may be responsible for the roles of orexin A in two types of reward. In a word, the differential roles of orexin A in drug and sexual reward are found in the present study, which provides some evidence for further research on the mechanisms of drug addiction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To explore the neural mechanisms underlying conditioned immunomodulation, this study employed the classical taste aversion (CTA) behavioral paradigm to establish the conditioned humoral and cellular immunosuppression (CIS) in Wistar rats, by paring saccharin (CS) with intraperitoneal (i.p.) injection of an immunosuppressive drug cyclophophamide (UCS). C-fos immunohistochemistry method was used to observe the changes of the neuronal activities in the rat brain during the acquisition, expression and extinction of the conditioned immunosuppression (CIS). The followings are the main results: 1. Five days after one trial of CS-UCS paring, reexposure to CS alone significantly decreased the level of the anti-ovalbumin (OVA) IgG in the peripheral serum. Two trials of CS-UCS paring and three reexposures to CS not only resulted in further suppression of the primary immune response, but also reduced the numbers of peripheral lymphocytes and white blood cells. This finding indicates that CS can induce suppression of the immune function, and the magnitude of the effects is dependent on the intensity of training. 2. On day 5 following two trials of CS-UCS pairing, CS suppressed the spleen lymphocytes responsiveness to mitogens ConA, PHA and PWM, and decreased the numbers of peripheral lymphocytes and white blood cells. On day 15, only PHA induced lymphocyte proliferation was suppressed by CS. On day 30, presentation of CS did not have any effect on these immune parameters. These results suggest that the conditioned suppression of the cellular immune function can retain 5-15 days, and extinct after 30 days. 3. CTA was easily induced by one or two CS-UCS parings, and remained robust even after 30 days. These data demonstrate that CIS can be dissociated from CTA, and they may be mediated by different neural mechanisms. 4. Immunohistochemistry assays revealed a broad pattern of c-fos expression throughout the rat brain following the CS-UCS pairing and reexposure to CS, suggesting that many brain regions are involved in CIS. Some brain areas including the solitary tract nucleus (Sol), lateral parabrachial nucleus (LPB) and insular cortex (IC), showed high level c-fos expressions in response to both CS and UCS, suggesting that they may be involved in the transmission and integration of the CS and UCS signals in the brain. There were dense c-FOS positive neurons in the paraverntricular nucleus (PVN) and supraoptic nucleus (SO) of hypothalamus, subfornical organ (SFO) and area postrema (AP) etc. after two trials of CS-UCS paring and after the reexposure to CS 5 days later, but not in the first training and after the extinction of CIS (30 days later). The results reflect that these nuclei may have an important role in CIS expression, and may also response to the immunosuppression of UCS. The conditioned training and reexposure to CS 5 days later induced high level c-fos expression in the cingulate cortex (Cg), central amygdaloid nucleus (Ce), intermediate part of lateral septal nucleus (LSI) and ventrolateral parabrachial nucleus (VLPB) etc. But c-fos induction was not apparent when presenting CS 30 days later. These brain regions are mainly involved in CIS, and may be critical structures in the acquisition and expression of CIS. Some brain regions, including the frontal cortex (Fr), ventral orbital cortex (VO), IC, perirhinal cortex (PRh), LPB and the medial part of solitary nucleus (SolM), showed robust c-FOS expression following the conditioning training and reexposure to CS both on day 5 and day 30, suggesting that they are critically involved in CTA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inferior temporal cortex (IT) of monkeys is thought to play an essential role in visual object recognition. Inferotemporal neurons are known to respond to complex visual stimuli, including patterns like faces, hands, or other body parts. What is the role of such neurons in object recognition? The present study examines this question in combined psychophysical and electrophysiological experiments, in which monkeys learned to classify and recognize novel visual 3D objects. A population of neurons in IT were found to respond selectively to such objects that the monkeys had recently learned to recognize. A large majority of these cells discharged maximally for one view of the object, while their response fell off gradually as the object was rotated away from the neuron"s preferred view. Most neurons exhibited orientation-dependent responses also during view-plane rotations. Some neurons were found tuned around two views of the same object, while a very small number of cells responded in a view- invariant manner. For five different objects that were extensively used during the training of the animals, and for which behavioral performance became view-independent, multiple cells were found that were tuned around different views of the same object. No selective responses were ever encountered for views that the animal systematically failed to recognize. The results of our experiments suggest that neurons in this area can develop a complex receptive field organization as a consequence of extensive training in the discrimination and recognition of objects. Simple geometric features did not appear to account for the neurons" selective responses. These findings support the idea that a population of neurons -- each tuned to a different object aspect, and each showing a certain degree of invariance to image transformations -- may, as an assembly, encode complex 3D objects. In such a system, several neurons may be active for any given vantage point, with a single unit acting like a blurred template for a limited neighborhood of a single view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binocular rivalry refers to the alternating perceptions experienced when two dissimilar patterns are stereoscopically viewed. To study the neural mechanism that underlies such competitive interactions, single cells were recorded in the visual areas V1, V2, and V4, while monkeys reported the perceived orientation of rivaling sinusoidal grating patterns. A number of neurons in all areas showed alternating periods of excitation and inhibition that correlated with the perceptual dominance and suppression of the cell"s preferred orientation. The remaining population of cells were not influenced by whether or not the optimal stimulus orientation was perceptually suppressed. Response modulation during rivalry was not correlated with cell attributes such as monocularity, binocularity, or disparity tuning. These results suggest that the awareness of a visual pattern during binocular rivalry arises through interactions between neurons at different levels of visual pathways, and that the site of suppression is unlikely to correspond to a particular visual area, as often hypothesized on the basis of psychophysical observations. The cell-types of modulating neurons and their overwhelming preponderance in higher rather than in early visual areas also suggests -- together with earlier psychophysical evidence -- the possibility of a common mechanism underlying rivalry as well as other bistable percepts, such as those experienced with ambiguous figures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most computational models of neurons assume that their electrical characteristics are of paramount importance. However, all long-term changes in synaptic efficacy, as well as many short-term effects, are mediated by chemical mechanisms. This technical report explores the interaction between electrical and chemical mechanisms in neural learning and development. Two neural systems that exemplify this interaction are described and modelled. The first is the mechanisms underlying habituation, sensitization, and associative learning in the gill withdrawal reflex circuit in Aplysia, a marine snail. The second is the formation of retinotopic projections in the early visual pathway during embryonic development.