958 resultados para CYTOKINE-INDUCED APOPTOSIS
Resumo:
Thalidomide has been shown to selectively inhibit TNF-a production in vitro by lipopolysaccharide (LPS)-stimulated monocytes. TNF-a has been shown to play a pivotal role in the pathophysiology of endotoxic shock. Using a mouse model of LPS-induced shock, we investigated the effects of thalidomide on the production of TNF-a and other cytokines and on animal survival. After injection of 100-350 µg LPS into mice, cytokines including TNF-a, IL-6, IL-10, IL-1ß, GM-CSF and IFN-g were measured in the serum. Administration of 200 mg/kg thalidomide to mice before LPS challenge modified the profile of LPS-induced cytokine secretion. Serum TNF-a levels were reduced by 93%, in a dose-dependent manner, and TNF-a mRNA expression in the spleens of mice was reduced by 70%. Serum IL-6 levels were also inhibited by 50%. Thalidomide induced a two-fold increase in serum IL-10 levels. Thalidomide treatment did not interfere with the production of GM-CSF, IL-1ß or IFN-g. The LD50 of LPS in this model was increased by thalidomide pre-treatment from 150 µg to 300 µg in 72 h. Thus, at otherwise lethal doses of LPS, thalidomide treatment was found to protect animals from death
Resumo:
The contributions of cytokines to the development and progression of disease in a mouse model of retrovirus-induced immunodeficiency (MAIDS) are controversial. Some studies have indicated an etiologic role for type 2 cytokines, while others have emphasized the importance of type 1 cytokines. We have used mice deficient in expression of IL-4, IL-10, IL-4 and IL-10, IFN-g, or ICSBP - a transcriptional protein involved in IFN signaling - to examine their contributions to this disorder. Our results demonstrate that expression of type 2 cytokines is an epiphenomenon of infection and that IFN-g is a driving force in disease progression. In addition, exogenously administered IL-12 prevents many manifestations of disease while blocking retrovirus expression. Interruption of the IFN signaling pathways in ICSBP-/- mice blocks induction of MAIDS. Predictably, ICSBP-deficient mice exhibit impaired responses to challenge with several other viruses. This immunodeficiency is associated with impaired production of IFN-g and IL-12. Unexpectedly, however, the ICSBP-/- mice also develop a syndrome with many similarities to chronic myelogenous leukemia in humans. The chronic phase of this disease is followed by a fatal blast crisis characterized by clonal expansions of undifferentiated cells. ICSBP is thus an important determinant of hematopoietic growth and differentiation as well as a prominent signaling molecule for IFNs
Resumo:
The hallmark of chronic Chagas' disease cardiomyopathy (CCC) is the finding of a T cell-rich inflammatory mononuclear cell infiltrate in the presence of extremely few parasites in the heart lesions. The scarcity of parasites in affected heart tissue casts doubt on the direct participation of Trypanosoma cruzi in CCC heart tissue lesions, and suggests the possible involvement of autoimmunity. The cells in the infiltrate are presumably the ultimate effectors of tissue damage, and there is evidence that such cells recognize cardiac myosin in molecular mimicry with T. cruzi proteins rather than primary reactivity to T. cruzi antigens (Cunha-Neto et al. (1996) Journal of Clinical Investigation, 98: 1709-1712). Recently, we have studied heart-infiltrating T cells at the functional level. In this short review we summarize the studies about the role of cytokines in human and experimental T. cruzi infection, along with our data on heart-infiltrating T cells in human Chagas' cardiomyopathy. The bulk of evidence points to a significant production of IFN-g and TNF-a which may be linked to T. cruzi-induced IL-12 production
Resumo:
The in utero exposure of hamsters to low doses of diazepam results in impaired host defense against Mycobacterium bovis during adulthood. Delayed developmental immunotoxicity, however, represents a specific situation that might not be general. The present experiment was undertaken to investigate the effects of diazepam on hamster resistance to M. bovis using adult animals. The effects of diazepam treatment on serum cortisol levels were also studied. Adult hamsters (N = 10 for each group) were treated with diazepam (E1 = 1.0, E2 = 2.0 or E3 = 3.0 mg kg-1 day-1 subcutaneously) or with control solution (C) for 30 days. Seven days after the beginning of the treatment, the animals received identical inoculum concentrations of M. bovis. Hamsters treated with the higher (2.0 and 3.0 mg kg-1 day-1) doses of diazepam exhibited: 1) increased granuloma areas in the liver (C = 1.81 ± 1.39, E2 = 10.29 ± 4.64 and E3 = 15.80 ± 4.82) and lung (C = 0.54 ± 0.55, E2 = 6.28 ± 3.85 and E3 = 6.31 ± 3.56) and 2) increased scores of M. bovis colony-forming units isolated from liver (C = 2.0, E2 = 3.0 and E3 = 3.5), lung (C = 1.0, E2 = 3.0 and E3 = 3.5) and spleen (C = 1.0, E2 = 2.5 and E3 = 4.0). These effects were dose dependent, and were not detected or were less severe in animals treated with the lowest (1.0 mg/kg) dose of diazepam as well as in those of the control group. Furthermore, diazepam treatment (3.0 mg kg-1 day-1 for 30 days) increased (E3 = 71.32 ± 2.99; N = 10) the serum levels of cortisol compared to control hamsters (C = 22.61 ± 2.75; N = 10). The present data, that demonstrate an impaired defense against M. bovis in adult hamsters treated with diazepam, were tentatively explained on the basis of a direct and/or indirect action of diazepam on the cytokine network. The effects may be related to stimulation of peripheral benzodiazepine receptor binding sites (PBR) by macrophages and/or lymphocytes, or they may be mediated by PBR stimulation of the adrenals.
Resumo:
Human localized cutaneous leishmaniasis (LCL), induced by Leishmania braziliensis, ranges from a clinically mild, self-healing disease with localized cutaneous lesions to severe forms which can present secondary metastatic lesions. The T cell-mediated immune response is extremely important to define the outcome of the disease; however, the underlying mechanisms involved are not fully understood. A flow cytometric analysis of incorporation of 7-amino actinomycin D and CD4+ or CD8+ T cell surface phenotyping was used to determine whether different frequencies of early apoptosis or accidental cell death occur at different stages of LCL lesions. When all cells obtained from a biopsy sample were analyzed, larger numbers of early apoptotic and dead cells were observed in lesions from patients with active disease (mean = 39.5 ± 2.7%) as compared with lesions undergoing spontaneous healing (mean = 17.8 ± 2.2%). Cells displaying normal viability patterns obtained from active LCL lesions showed higher numbers of early apoptotic events among CD8+ than among CD4+ T cells (mean = 28.5 ± 3.8 and 15.3 ± 3.0%, respectively). The higher frequency of cell death events in CD8+ T cells from patients with LCL may be associated with an active form of the disease. In addition, low frequencies of early apoptotic events among the CD8+ T cells were observed in two patients with self-healing lesions. Although the number of patients in the latter group was small, it is possible to speculate that, during the immune response, differences in apoptotic events in CD4+ and CD8+ T cell subsets could be responsible for controlling the CD4/CD8 ratio, thus leading to healing or maintenance of disease.
Resumo:
The immune and central nervous systems are functionally connected and interacting. The concept that the immune signaling to the brain which induces fever during infection and inflammation is mediated by circulating cytokines has been traditionally accepted. Administration of bacterial lipopolysaccharide (LPS) induces the appearance of a so-termed "cytokine cascade" in the circulation more or less concomitantly to the developing febrile response. Also, LPS-like fever can be induced by systemic administration of key cytokines (IL-1ß, TNF-alpha, and others). However, anti-cytokine strategies against IL-1ß or TNF-alpha along with systemic injections of LPS frequently lead to attenuation of the later stages of the febrile response but not of the initial phase of fever, indicating that cytokines are rather involved in the maintenance than in the early induction of fever. Within the last years experimental evidence has accumulated indicating the existence of neural transport pathways of immune signals to the brain. Because subdiaphragmatic vagotomy prevents or attenuates fever in response to intraperitoneal or intravenous injections of LPS, a role for vagal afferent nerve fibers in fever induction has been proposed. Also other sensory nerves may participate in the manifestation of febrile responses under certain experimental conditions. Thus, injection of a small dose of LPS into an artificial subcutaneous chamber results in fever and formation of cytokines within the inflamed tissue around the site of injection. This febrile response can be blocked in part by injection of a local anesthetic into the subcutaneous chamber, indicating a participation of cutaneous afferent nerve signals in the manifestation of fever in this model. In conclusion, humoral signals and an inflammatory stimulation of afferent sensory nerves can participate in the generation and maintenance of a febrile response.
Resumo:
The gut mucosa is a major site of contact with antigens from food and microbiota. Usually, these daily contacts with natural antigens do not result in inflammatory reactions; instead they result in a state of systemic hyporesponsiveness named oral tolerance. Inflammatory bowel diseases (IBD) are associated with the breakdown of the immunoregulatory mechanisms that maintain oral tolerance. Several animal models of IBD/colitis are available. In mice, these include targeted disruptions of the genes encoding cytokines, T cell subsets or signaling proteins. Colitis can also be induced by intrarectal administration of chemical substances such as 2,4,6-trinitrobenzene sulfonic acid in 50% ethanol. We report here a novel model of colitis induced by intrarectal administration of 50% ethanol alone. Ethanol-treated mice develop an inflammatory reaction in the colon characterized by an intense inflammatory infiltrate in the mucosa and submucosa of the large intestine. They also present up-regulation of both interferon gamma (IFN-gamma) and interleukin-4 (IL-4) production by cecal lymph node and splenic cells. These results suggest a mixed type of inflammation as the substrate of the colitis. Interestingly, cells from mesenteric lymph nodes of ethanol-treated mice present an increase in IFN-gamma production and a decrease in IL-4 production indicating that the cytokine balance is altered throughout the gut mucosa. Moreover, induction of oral tolerance to ovalbumin is abolished in these animals, strongly suggesting that ethanol-induced colitis interferes with immunoregulatory mechanisms in the intestinal mucosa. This novel model of colitis resembles human IBD. It is easy to reproduce and may help us to understand the mechanisms involved in IBD pathogenesis.
Resumo:
An alkali-insoluble fraction 1 (F1), which contains mainly ß-glucan isolated from the cell wall of Histoplasma capsulatum, induces eosinophil recruitment into the peritoneal cavity of mice. The present study was carried out to determine the participation of interleukin-5 (IL-5) in this process. Inbred C57BL/6 male mice weighing 15-20 g were treated ip with 100 µg of anti-IL-5 monoclonal antibody (TRFK-5, N = 7) or an isotype-matched antibody (N = 7), followed by 300 µg F1 in 1 ml PBS ip 24 h later. Controls (N = 5) received only 1 ml PBS. Two days later, cells from the peritoneal cavity were harvested by injection of 3 ml PBS and total cell counts were determined using diluting fluid in a Neubauer chamber. Differential counts were performed using Rosenfeld-stained cytospin preparations. The F1 injection induced significant (P < 0.01) leukocyte recruitment into the peritoneal cavity (8.4 x 10(6) cells/ml) when compared with PBS alone (5.5 x 10(6) cells/ml). Moreover, F1 selectively (P < 0.01) induced eosinophil recruitment (1 x 10(6) cells/ml) when compared to the control group (0.07 x 10(6) cells/ml). Treatment with TRFK-5 significantly (P < 0.01) inhibited eosinophil recruitment (0.18 x 10(6) cells/ml) by F1 without affecting recruitment of mononuclear cells or neutrophils. We conclude that the F1 fraction of the cell wall of H. capsulatum induces peritoneal eosinophilia by an IL-5-dependent mechanism. Depletion of this cytokine does not have effect on the recruitment of other cell types induced by F1.
Resumo:
Aging is accompanied by a decrease in several physiological functions that make older individuals less responsive to environmental challenges. In the present study, we analyzed the immune response of female BALB/c mice (N = 6) of different ages (from 2 to 96 weeks) and identified significant age-related alterations. Immunization with hapten-protein (trinitrophenyl-bovine serum albumin) conjugates resulted in lower antibody levels in the primary and secondary responses of old mice (72 weeks old). Moreover, young mice (2, 16, and 32 weeks old) maintained specific antibodies in their sera for longer periods after primary immunization than did old mice. However, a secondary challenge efficiently induced memory in old mice, as shown by the increased antibody levels in their sera. The number of CD4+ and CD8+ T cells in the spleen increased until 8 weeks of age but there was no change in the CD4+/CD8+ ratio with aging. Splenic T cells from old mice that had or had not been immunized were less responsive to concanavalin-A and showed reduced cytokine production compared to young mice (IL-2: 57-127 vs 367-1104 pg/mL, IFN-g: 2344-12,836 vs 752-23,106 pg/mL and IL-10: 393-2172 vs 105-2869 pg/mL in old and young mice, respectively). These data suggest that there are significant changes in the organization of the immune system throughout life. However, the relevance of these alterations for the functioning of the immune system is unknown.
Resumo:
We showed that guaraná (Paullinia cupana Mart var. sorbilis) had a chemopreventive effect on mouse hepatocarcinogenesis and reduced diethylnitrosamine-induced DNA damage. In the present experiment, we evaluated the effects of guaraná in an experimental metastasis model. Cultured B16/F10 melanoma cells (5 x 10(5) cells/animal) were injected into the tail vein of mice on the 7th day of guaraná treatment (2.0 mg P. cupana/g body weight, per gavage) and the animals were treated with guaraná daily up to 14 days until euthanasia (total treatment time: 21 days). Lung sections were obtained for morphometric analysis, apoptotic bodies were counted to calculate the apoptotic index and proliferating cell nuclear antigen-positive cells were counted to determine the proliferation index. Guaraná-treated (GUA) animals presented a 68.6% reduction in tumor burden area compared to control (CO) animals which were not treated with guaraná (CO: 0.84 ± 0.26, N = 6; GUA: 0.27 ± 0.24, N = 6; P = 0.0043), a 57.9% reduction in tumor proliferation index (CO: 23.75 ± 20.54, N = 6; GUA: 9.99 ± 3.93, N = 6; P = 0.026) and a 4.85-fold increase in apoptotic index (CO: 66.95 ± 22.95, N = 6; GUA: 324.37 ± 266.74 AB/mm², N = 6; P = 0.0152). In this mouse model, guaraná treatment decreased proliferation and increased apoptosis of tumor cells, consequently reducing the tumor burden area. We are currently investigating the molecular pathways of the effects of guaraná in cultured melanoma cells, regarding principally the cell cycle inhibitors and cyclins.
Resumo:
Phosphatidylserine (PS) exposure occurs during the cell death program and fluorescein-labeled lactadherin permits the detection of PS exposure earlier than annexin V in suspended cell lines. Adherent cell lines were studied for this apoptosis-associated phenomenon to determine if PS probing methods are reliable because specific membrane damage may occur during harvesting. Apoptosis was induced in the human tongue squamous carcinoma cell line (Tca8113) and the adenoid cystic carcinoma cell line (ACC-2) by arsenic trioxide. Cells were harvested with a modified procedure and labeled with lactadherin and/or annexin V. PS exposure was localized by confocal microscopy and apoptosis was quantified by flow cytometry. The detachment procedure without trypsinization did not induce cell damage. In competition binding experiments, phospholipid vesicles competed for more than 95 and 90% of lactadherin but only about 75 and 70% of annexin V binding to Tca8113 and ACC-2 cells. These data indicate that PS exposure occurs in three stages during the cell death program and that fluorescein-labeled lactadherin permitted the detection of early PS exposure. A similar pattern of PS exposure has been observed in two malignant cell lines with different adherence, suggesting that this pattern of PS exposure is common in adherent cells. Both lactadherin and annexin V could be used in adherent Tca8113 and ACC-2 cell lines when an appropriate harvesting procedure was used. Lactadherin is more sensitive than annexin V for the detection of PS exposure as the physical structure of PS in these blebs and condensed apoptotic cell surface may be more conducive to binding lactadherin than annexin V.
Resumo:
Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.
Resumo:
Lactobacillus delbrueckii UFV-H2b20 has been shown to increase clearance of bacteria injected into the blood of germ-free mice. Moreover, it induces the production of type 1 cytokines by human peripheral mononuclear cells. The objective of the present study was to investigate the production of inflammatory cytokines [interleukin-12 (IL-12 p40), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)] triggered in vitro by live, heat-killed or lysozyme-treated L. delbrueckii UFV-H2b20 and in vivo by a live preparation. Germ-free, L. delbrueckii-monoassociated and lipopolysaccharide (LPS)-resistant C3H/HeJ mice were used as experimental models. UFV-H2b20 induced the production of IL-12 p40 and TNF-α by peritoneal cells and IFN-γ by spleen cells from germ-free or monoassociated Swiss/NIH mice and LPS-hyporesponsive mice (around 40 ng/mL for IL-12 p40, 200 pg/mL for TNF-α and 10 ng/mL for IFN-γ). Heat treatment of L. delbrueckii did not affect the production of these cytokines. Lysozyme treatment decreased IL-12 p40 production by peritoneal cells from C3H/HeJ mice, but did not affect TNF-α production by these cells or IFN-γ production by spleen cells from the same mouse strain. TNF-α production by peritoneal cells from Swiss/NIH L. delbrueckii-monoassociated mice was inhibited by lysozyme treatment. When testing IL-12 p40 and IFN-γ levels in sera from germ-free or monoassociated Swiss/NIH mice systemically challenged with Escherichia coli we observed that IL-12 p40 was produced at marginally higher levels by monoassociated mice than by germ-free mice (40 vs 60 ng/mL), but IFN-γ was produced earlier and at higher levels by monoassociated mice (monoassociated 4 and 14 ng/mL 4 and 8 h after infection, germfree 0 and 7.5 ng/mL at the same times). These results show that L. delbrueckii UFV-H2b20 stimulates the production of type 1 cytokines in vitro and in vivo, therefore suggesting that L. delbrueckii might have adjuvant properties in infection in which these cytokines play a major role.
Resumo:
Nephrotoxicity is the main side effect of antibiotics such as gentamicin. Preconditioning has been reported to protect against injuries as ischemia/reperfusion. The objective of the present study was to determine the effect of preconditioning with gentamicin on LLC-PK1 cells. Preconditioning was induced in LLC-PK1 cells by 24-h exposure to 2.0 mM gentamicin (G/IU). After 4 or 15 days of preconditioning, cells were again exposed to gentamicin (2.0 mM) and compared to untreated control or G/IU cells. Necrosis and apoptosis were assessed by acridine orange and HOESCHT 33346. Nitric oxide (NO) and endothelin-1 were assessed by the Griess method and available kit. Heat shock proteins were analyzed by Western blotting. After 15 days of preconditioning, LLC-PK1 cells exhibited a significant decrease in necrosis (23.5 ± 4.3 to 6.5 ± 0.3%) and apoptosis (23.5 ± 4.3 to 6.5 ± 2.1%) and an increase in cell proliferation compared to G/IU. NO (0.177 ± 0.05 to 0.368 ± 0.073 µg/mg protein) and endothelin-1 (1.88 ± 0.47 to 2.75 ± 0.53 pg/mL) production significantly increased after 15 days of preconditioning compared to G/IU. No difference in inducible HSP 70, constitutive HSC 70 or HSP 90 synthesis in tubular cells was observed after preconditioning with gentamicin. The present data suggest that preconditioning with gentamicin has protective effects on proximal tubular cells, that involved NO synthesis but not reduction of endothelin-1 or production of HSP 70, HSC 70, or HSP 90. We conclude that preconditioning could be a useful tool to prevent the nephrotoxicity induced by gentamicin.
Resumo:
The effect of ionizing irradiation on testes and the protective effects of melatonin were investigated by immunohistochemical and electron microscopic methods. Eighty-two adult male Wistar rats were divided into 10 groups. The rats in the irradiated groups were exposed to a sublethal irradiation dose of 8 Gy, either to the total body or abdominopelvic region using a 60Co source at a focus of 80 cm away from the skin in the morning or evening together with vehicle (20% ethanol) or melatonin administered 24 h before (10 mg/kg), immediately before (20 mg/kg) and 24 h after irradiation (10 mg/kg), all ip. Caspace-3 immunoreactivity was increased in the irradiated group compared to control (P < 0.05). Melatonin-treated groups showed less apoptosis as indicated by a considerable decrease in caspace-3 immunoreactivity (P < 0.05). Electron microscopic examination showed that all spermatogenic cells, especially primary spermatocytes, displayed prominent degeneration in the groups submitted to total body and abdominopelvic irradiation. However, melatonin administration considerably inhibited these degenerative changes, especially in rats who received abdominopelvic irradiation. Total body and abdominopelvic irradiation induced identical apoptosis and testicular damage. Chronobiological assessment revealed that biologic rhythm does not alter the inductive effect of irradiation. These data indicate that melatonin protects against total body and abdominopelvic irradiation. Melatonin was more effective in the evening abdominopelvic irradiation and melatonin-treated group than in the total body irradiation and melatonin-treated group.