990 resultados para COUPLED-CLUSTER CALCULATIONS
Resumo:
Wild-type Anabaena sp. strain PCC 7120, a filamentous nitrogen-fixing cyanobacterium, produces single heterocysts at semi-regular intervals. asr0100 (patU5) and alr0101 (patU3) are homologous to the 5' and 3' portions of patU of Nostoc punctiforme. alr0099 (hetZ) overlaps the 5' end of patU5. hetZ, patU5 and patU3 were all upregulated, or expressed specifically, in proheterocysts and heterocysts. Mutants of hetZ showed delayed or no heterocyst differentiation. In contrast, a patU3 mutation produced a multiple contiguous heterocyst (Mch) phenotype and restored the formation of otherwise lost intercalary heterocysts in a patA background. Decreasing the expression of patU3 greatly increased the frequency of heterocysts in a mini-patS strain. Two promoter regions and two principal, corresponding transcripts were detected in the hetZ-patU5-patU3 region. Transcription of hetZ was upregulated in a hetZ mutant and downregulated in a patU3 mutant. When mutants hetZ::C.K2 and hetZ::Tn5-1087b were nitrogen-deprived, P-hetC-gfp was very weakly expressed, and in hetZ::Tn5-1087b, P-hetR-gfp was relatively strongly expressed in cells that had neither a regular pattern nor altered morphology. We conclude that the hetZ-patU5-patU3 cluster plays an important role in co-ordination of heterocyst differentiation and pattern formation. The presence of homologous clusters in filamentous genera without heterocysts is suggestive of a more general role.
Resumo:
A method was presented for the determination of testosterone, methyltestosterone and progesterone in liquid cosmetics by coupling polymer monolith microextraction (PMME) to high performance liquid chromatography with UV detection. A poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was selected as the extraction medium, which showed high extraction capacity towards these compounds. To achieve optimum extraction performance, several parameters relating to PMME were investigated, including extraction flow rate and pH value, inorganic salt and organic phase concentration of the sample matrix. By simple dilution with phosphate solution and filtering, the sample solution then could be directly injected into the device for extraction. The limits of detection of testosterone, methyltestosterone and progesterone were calculated to be 2, 3, 2, 8 and 4.6 mu g/L. Good linearity was achieved in the range of 10 to 1000 mu g/L with a linear coefficient. r value above 0. 996. Excellent method reproducibility was found by intra- and inter-day precisions, yielding the relative standard deviations of < 7. 7 % and < 7. 5 %, respectively. Recovery for them in the real samples was between 83% and 119%.
Resumo:
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325-amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with. the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.
Resumo:
The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report the first demonstration of continuous-wave operation of a tunable, compact microring laser array based on a vertical-coupling architecture, well suited to larger-scale integration. Wavelength separation tunability from 4.9 to 6.3nm is observed. © 2006 Optical Society of America.
Resumo:
There has been much recent interest in engineering the phenomenon of synchronization in coupled micro-/nano-scale oscillators for applications ranging from precision time and frequency references to new approaches to information processing. This paper presents descriptive modelling detail and further experimental validation of the phenomenon of mutual synchronization in coupled MEMS oscillators building upon recent experimental validation of this concept by the present authors. In particular, the underlying dependence of the observation of synchronization on system parameters is studied through numerical and analytical modelling while considering essential nonlinearities in both the resonator and circuit domain. Experimental results demonstrating synchronized response are elaborated based on the realization of electrically coupled MEMS resonator based square-wave oscillators. The experimental results on frequency entrainment are found to be in general agreement with results obtained through analytical modeling and numerical simulation. The concept presented here is scalable and could be used to investigate the dynamics of large-arrays of coupled MEMS oscillators. © 2014 AIP Publishing LLC.
Resumo:
Excavation works in urban areas require a preliminary risk damage assessment. In historical cities, the prediction of building response to settlements is necessary to reduce the risk of damage of the architectural heritage. The current method used to predict the building damage due to ground deformations is the Limiting Tensile Strain Method (LTSM). This method is based on an uncoupled soil-structure analysis, in which the building is modelled as an elastic beam subject to imposed greenfield settlements and the induced tensile strains are compared with a limit value for the material. This approach neglects many factors which play an important rule in the response of the structure to tunneling induced settlements. In this paper, the possibility to apply a settlement risk assessment derived from the seismic vulnerability approach is considered. The parameters that influence the structural response to settlements can be defined through numerical coupled analyses which take into account the nonlinear behaviour of masonry and the soil-structure interaction.
Resumo:
Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N-2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.
Resumo:
Coupled microcircular resonators tangentially coupled to a bus waveguide, which is between the resonators, are numerically investigated by the finite-difference time-domain technique. For symmetrically coupled microcircular resonators with refractive index of 3.2, radius of 2 mu m, and width of the bus waveguide of 0.4 mu m, a mode Q factor of the order of 105 is obtained for a mode at the frequency of 243 THz. An output coupling efficiency of as high as 0.99 is calculated for a mode with a Q factor ranging from 10(3) to 10(4). The mode Q factor is 2 orders larger than that of the modes confined in a single circular resonator tangentially coupled to the same bus waveguide. Furthermore, the high Q traveling modes in the coupled microcircular resonators are suitable for optical single processing.
Resumo:
Microcylinder resonators with multiple ports connected to waveguides are investigated by 2D finite-difference time-domain (FDTD) simulation for realizing microlasers with multiple outputs. For a 10 mu m radius microcylinder with a refractive index of 3.2 and three 2 mu m wide waveguides, confined mode at the wavelength of 1542.3 nm can have a mode Q factor of 6.7 x 10(4) and an output coupling efficiency of 0.76. AlGaInAs/InP microcylinder lasers with a radius of 10 mu m and a 2 mu m wide output waveguide are fabricated by planar processing techniques. Continuous-wave electrically injected operation is realized with a threshold current of 4 mA at room temperature, and the jumps of output power are observed accompanying a lasing mode transformation.
Resumo:
We have fabricated and characterized GaN-based vertical cavity surface emitting lasers (VCSELs) with a unique active region structure, in which three sets of InGaN asymmetric coupled quantum wells are placed in a half-wavelength (0.5 lambda) length. Lasing action was achieved under optical pumping at room temperature with a threshold pumping energy density of about 6.5 mJ/cm(2). The laser emitted a blue light at 449.5 nm with a narrow linewidth below 0.1 nm and had a high spontaneous emission factor of about 3.0x10(-2). The results indicate that this active region structure is useful in reducing the process difficulties and improving the threshold characteristics of GaN-based VCSELs.
Resumo:
We theoretically investigate the electron transport and spin polarization of two coupled quantum wells with Dresselhaus spin-orbit interaction. In analogy with the optical dual-channel directional coupler, the resonant tunneling effect is treated by the coupled-mode equations. We demonstrate that spin-up and -down electrons can be completely separated from each other for the system with an appropriate system geometry and a controllable barrier. Our result provides a new approach to construct spin-switching devices without containing any magnetic materials or applying a magnetic field. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2981204]
Resumo:
Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.
Resumo:
We obtained a low density of coupled InAs/GaAs quantum dots (QDs) with an emission wavelength of around 1.3 mu m at room temperature. Atomic force microscopy and transmission electronic microscopy reveal that the dot size difference and the lateral displacement between the two dots are related to the spacer thickness. Spectroscopy of the coupled QD ensembles is considerably influenced by the spacer thickness.
Resumo:
Current fluctuations can provide additional insight into quantum transport in mesoscopic systems. The present work is carried out for the fluctuation properties of transport through a pair of coupled quantum dots which are connected with ferromagnetic electrodes. Based on an efficient particle-number-resolved master equation approach, we are concerned with not only fluctuations of the total charge and spin currents, but also of each individual spin-dependent component. As a result of competition among the spin polarization, Coulomb interaction, and dot-dot tunnel coupling, rich behaviors are found for the self- and mutual-correlation functions of the spin-dependent currents.