904 resultados para COPOLYMER MELTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-based latices, used in the production of internal liners for beer/beverage cans, were investigated using a number of analytical techniques. The epoxy-graft-acrylic polymers, used to prepare the latices, and films, produced from those latices, were also examined. It was confirmed that acrylic polymer preferentially grafts onto higher molecular weight portions of the epoxy polymer. The amount of epoxy remaining ungrafted was determined to be 80%. This figure is higher than was previously thought. Molecular weight distribution studies were carried out on the epoxy and epoxy-g-acrylic resins. A quantitative method for determining copolymer composition using GPC was evaluated. The GPC method was also used to determine polymer composition as a function of molecular weight. IR spectroscopy was used to determine the total level of acrylic modification of the polymers and NMR was used to determine the level of grafting. Particle size determinations were carried out using transmission electron microscopy and dynamic light scattering. Levels of stabilising amine greatly affected the viscosity of the latex, particle size and amount of soluble polymer but the core particle size, as determined using TEM, was unaffected. NMR spectra of the latices produced spectra only from solvents and amine modifiers. Using solid-state CP/MAS/freezing techniques spectra from the epoxy component could be observed. FT-IR spectra of the latices were obtained after special subtraction of water. The only difference between the spectra of the latices and those of the dry film were due to the presence of the solvents in the former. A distinctive morphology in the films produced from the latices was observed. This suggested that the micelle structure of the latex survives the film forming process. If insufficient acrylic is present, large epoxy domains are produced which gives rise to poor film characteristics. Casting the polymers from organic solutions failed to produce similar morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogels are a unique class of polymer which swell, but do not dissolve in, water. A range of 2-hydroxyethyl methacrylate based copolymer hydrogels containing both cyclic and linear polyethers have been synthesised and are described in this thesis. Initially, cyclic polyethers were occluded within the polymer matrix and the transport properties investigated. The results indicated that the presence of an ionophore can be used to modulate ion transport and that ion transport is described by a dual-sorption mechanism. However, these studies were limited due to ionophore loss during hydration. Hence, the synthesis of a range of acrylate based crown ether monomers was considered. A pure sample of 4-acryolylaminobenzo-15-crown-5 was obtained and a terpolymer containing this monomer was prepared. Transport studies illustrated that the presence of a `bound' ionophore modulates ion transport in a similar way to the occluded systems. The transport properties of a series of terpolymers containing linear polyethers were then investigated. The results indicated that the dual-sorption mechanism is observed for these systems with group II metal cations while the transport of group I metal cations, with the exception of sodium, is enhanced. Finally, the equilibrium water contents (EWC) surface and mechanical properties of these terpolymers containing linear polyethers were examined. Although subtle variations in EWC are observed as the structure of the polyether side chain varies, generally EWC is enhanced due to the hydrophilicity of the polyether side chain. The macroscopic surface properties were investigated using a sessile drop technique and FTIR spectroscopy. At a molecular level surface properties were probed using an in vitro ocular spoilation model and preliminary cell adhesion studies. The results indicate that the polyethylene oxide side chains are expressed at the polymer surface thus reducing the adhesion of biological species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogels may be described as cross-linked hydrophilic polymers that swell but do not dissolve in water. The production of high water content hydrogels was the subject of investigation. Based upon copolymer compositions that had already achieved commercial success as biomaterials, new monomers were added or substituted in and the effects observed. The addition of N-isopropyl acrylamide to an acrylamide-based composition that had previously been designed to become a contact lens, produced materials that showed smart effects in that the water content showed dependence on the temperature of the hydrating solution. Such thermo-responsive materials have potential uses in drug delivery, ultrafiltration and cell culture surfaces. Proteoglycans in nature have an important role to play in structural support where a highly hydrophilic structure maintains lubricious surfaces. Certain functional groups that impart this hydrophilicity are present in certain sulphonate monomers, Bis(3-sulphopropyl ester) itaconate, dipotassium salt (SPI), 3-Sulphopropyl ester acrylate, potassium salt (SPA) and Sodium 2-(acrylamido)-2-methyl propane sulphonate (NaAMPS). These monomers were incorporated into a HEMA-based copolymer that had been designed initially as a contact lens and the resulting effects examined. Highly hydrophilic materials resulted that showed reduced protein deposition over the neutral core material. It is postulated that a sulphonate group would have a larger number of hydration shells around it than for example methacrylic acid, leading to more dynamic exchange and so reducing the adsorption of biological solutes. A cationic monomer was added to bring back the net anionic nature of the sulphonate hydrogels and the effects studied. Ionic interactions were found to cause a reduction in the water content of the resulting materials as the mobility of the network decreased, leading to stiffer but less extensible materials. The presence of a net dominant charge, whether negative or positive, appeared to act to reduce protein deposition, but increasing equivalence in the amount of both charges served to present a more 'neutral' surface and deposition subsequently increased. The grafting of hydrophilic hydrogel layers onto silicone elastomer was attempted and the results evaluated using dynamic contact angle measurements. Following plasma oxidation to reduce the surface energy barrier to aqueous grafting chemistry, it was found that the wettability of the modified elastomers could be significantly enhanced by such treatment. The SPA-grafted material in particular hinted at an osmotic drive for rehydration that may be exploited in biomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the potential sensing applications of fibre Bragg gratings in polymer optical fibres. Fibre Bragg gratings are fabricated in different kinds of polymer optical fibres, including Poly methyl methacrylate (PMMA) and TOPAS cyclic olefin copolymer based microstructured polymer optical fibres and PMMA based step-index photosensitive polymer optical fibre, using the 325nm continuous wave ultraviolet laser and phase mask technique. The thermal response of fabricated microstructured polymer optical fibre Bragg gratings has been characterized. The PMMA based single mode microstructured polymer optical fibre Bragg gratings exhibit negative non-linear Bragg wavelength shift with temperature, including a quasi-linear region. The thermal sensitivity of such Bragg gratings in the linear region is up to -97pm/°C. A permanent shift in the grating wavelength at room temperature is observed when such gratings are heated above a threshold temperature which can be extended by annealing the fibre before grating inscription. The largest positive Bragg wavelength shift with temperature in transmission is observed in TOPAS based few moded microstructured polymer optical fibre Bragg gratings and the measured temperature sensitivity is 250±0.5pm/°C. Gluing method is developed to maintain stable optical coupling between PMMA based single mode step index polymer optical fibre Bragg gratings and single mode step index silica optical fibre. Being benefit from this success, polymer optical fibre Bragg gratings are able to be characterised for their temperature, humidity and strain sensitivity, which are -48.2±1pm/°C, 38.3±0.5pm per %RH and 1.33±0.04 pm/µ??respectively. These sensitivities have been utilised to achieve several applications. The strain sensitivity of step index polymer optical fibre Bragg grating devices has been exploited in the potential application of the strain condition monitoring of heavy textiles and when being attached to textile specimens with certain type of adhesives. These polymer fibre Bragg grating devices show better strain transfer and lower structure reinforcement than silica optical fibre Bragg grating devices. The humidity sensitivity of step index polymer optical fibre Bragg grating devices is applied to detecting water in jet fuel and is proved to be able to measure water content of less than 20 ppm in Jet fuel. A simultaneous temperature and humidity sensor is also made by attaching a polymer fibre Bragg grating to a silica optical fibre Bragg grating and it shows better humidity measurement accuracy than that of electronic competitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antisense technology is a novel drug discovery method, which provides an essential tool for directly using gene sequence information to rationally design specific inhibitions of mRNA, to treat a wide range of diseases. The efficacy of naked oligodeoxynucleotides (ODNs) is relatively short lived due to rapid degradation in vivo. The entrapment of ODNs within biodegradable sustained-release delivery systems may improve ODN stability and reduce dose required for efficacy. Biodegradable polymer microspheres were evaluated as delivery devices for ODNs and ribozymes. Poly(lactide-co-glycolide) polymers were used due to their biocompatibility and non toxic degradation products. Microspheres were prepared using a double emulsion-deposition method and the formulations characterised. In vitro release profiles were characterised by an initial burst effect during the first 48 hours of release followed by a more sustained release. The release profiles were influenced by microsphere size, copolymer molecular weight, copolymer ratio, ODN loading, ODN length, and ODN chemistry. The serum stability of ODNs was significantly improved when entrapped within polymer microspheres. The cellular association of ODNs entrapped within small spheres (1-2μm) was improved by approximately 20-fold in A431 carcinoma cells compared with free ODNs. Fluorescence microscopy studies showed a more diffuse subcellular distribution when delivered as a microsphere formulation compared with free ODNs, which exhibited the characteristic punctate periplasmic distribution. For in vivo evaluation, polymer microspheres containing fluorescently-labelled ODNs were stereo-taxically administered to the neostriatum of the rat brain. Free ODN resulted in a punctate cellular distribution after 24 hours. In comparison ODN delivered using polymer microspheres were intensely visible in cells 48 hours post administration, and fluorescence appeared to be diffuse covering both cytosolic and nuclear regions. Whole-body autoradiography was also used to evaluate the biodistribution of free tritium labelled ODN and ODN entrapped microspheres, following subcutaneous administration to Balb-C mice. Polymer entrapped ODN gave a similar biodistribution to free ODN. Free ODN was distributed within 24 hours, whereas polymer released ODN was observed still presented in organs and at the site of administration seven days post administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problems associated with x-ray-transparent denture base are defined and conventional approaches to their solution are assessed. Consideration of elemental absorption parameters leads to the postulation that atoms such as zinc, and bromine, may be effective radiopacifiers over at least part of the clinical x-ray spectrum. These elements had hitherto been considered too light to be effective. Investigation of copolymers of methylmethacrylate and p-bromostyrene revealed no deleterious effects arising from the aromatically brominated monomer (aliphatic bromination caused UV destabilisation). For effective x-ray absorption a higher level of bromination would be necessary, but the expense of suitable compounds made further study unjustifiable. Incorporation of zinc atoms into the polymer was accomplished by copolymerisation of zinc acrylate with methylmethacrylate in solution. At high zinc levels this produced a powder copolymer convenient for addition to dental polymers in the dough moulding process. The resulting mouldings showed increasing brittleness at high loadings of copolymer. Fracture was shown to be through the powder particles rather than around them, indicating the source of weakness to be in the internal structure of the copolymer. The copolymer was expected to be cross-linked through divalent zinc ions and its insolubility and infusibility supported this. Cleavage of the ionic cross links with formic acid produced a zinc-free linear copolymer of high molecular weight. Addition of low concentrations of acrylic acid to the dough moulding monomer appeared to 'labilise' the cross links producing a more homogeneous moulding with adequate wet strength. Toxicologically the zinc-containing materials are satisfactory and though zinc is extracted at a measurable rate in an aqueous system, this is very small and should be acceptable over the life of a denture. In other respects the composite is quite satisfactory and though a marketable product is not claimed the system is considered worthy of further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this thesis can be broadly divided into two sections. The first being the characterisation of hydrogel polymers in both their hydrated and dehydrated states and the second some aspects of the structural modification of polymers. The characterisation of hydrogel polymers in their dehydrated state (xerogels) involves such techniques as elemental analysis, pyrolysis gas liquid chromatography, infra-red spectroscopy, density determination and surface characterisation by contact angle measurements. The characterisation of some commercially available hydrogel materials was undertaken using such techniques and the results obtained were compared to laboratory synthesised systems in an attempt to assess the value of the combination of techniques employed. In the characterisation of hydrated polymers the amoumt and nature of water present is the single most important factor. The most convenient method of characterising this water involves the use of differential scanning calorimetry (DSC), coupled with total equilibrium water content measurements. DSC distinguishes between non-freezing and freezing water but in addition provides some information on the continuum of states in the freezing water fraction. Two aspects of the structural modification of hydrogel polymers were studied. The first involved the incorporation of acrylamide and substituted acryamide monomers into a copolymer system and an examination of the effect of this on the amino acid interaction of the polymers. The second was the attempted synthesis of cell surface analogues by the attachment of sugar type molecules to the polymer using a variety of reaction methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Priestlaw and Cockburn Law intrusions are zoned granitoid plutons intruded into Lower Palaeozoic sediments at the margin of, and prior to closure of, the Iapetus Ocean. They vary from marginal basic rocks to more acid rocks towards their centres. The parental magmas to the plutons were derived from an isotopically depleted mantle modified by melts/fluids during subduction. Zonation in the plutons was caused by combined assimilation and fractional crystallisation (AFC), and rates of assimilation were low relative to rates of fractionation. A series of pyroxene-mica diorites in Priestlaw are however hybrids formed by simple mixing. Porphyrite-acid porphyrite dykes, associated with the plutons, represent chilled portions of the pluton magmas; more evolved quartz porphyry dykes represent crustal melts. Lamprophyre dykes have high LILE and LREE abundances and relative depletions of HFS elements, typical of subduction related ultra-potassic magmas. High Mg numbers, Ni and Cr contents and experimental constraints, imply near primary status for the least evolved lamprophyres. Their enrichments in incompatible elements, high La/Nb, La/Yb, Sr and low Nd indicate derivation from a previously metasomatised mantle source. Granitoid plutons and lavas in the northern Southern Uplands have high Nd and low Sr, whereas the younger plutons of the southern Southern Uplands have higher Sr, La/Yb and lower Nd, consistent with derivation from a more enriched source. No plutons however have remained as closed systems. Three magmatic suites are present in southern Scotland: (1) Midland Valley Suite (2) Northern Southern Uplands Suite and (3) Southern Southern Uplands Suite, consistent with previous models indicating northward underthrusting of English lithosphere below the southern Southern Uplands. Further underthrusting of decoupled lithospheric mantle is indicated by the presence of lamorophyres in the eastern Southern Uplands, and took place between 410 Ma and 400 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Criffell-Dalbeattie pluton from SW Scotland is one of a suite of late Caledonian granitoids which are associated with extensive, contemporaneous and compositionally diverse suits of minor intrusions. The minor intrusive suite associated with the Criffell-Dalbeattie pluton is dominantly composed of a series of porphyritic microdiorites, microgranodiorites and microgranites known collectively as the porphyrite-porphyry series. This series can be divided into two groups, the porphyrites and the quartz porphyries, on the basis of petrography and geochemistry although there is some compositional overlap between the two. Compositionally, the porphyrites and quartz porphyries appear to correspond to the granodiorites and granites, respectively, which comprise the Criffell-Dalbeattie pluton, suggesting that the porphyrite-porphyry series of dykes represent magmas which were tapped from the evolving granitic magma chamber. The most mafic component of the minor intrusive suite is represented by calc-alkaline hornblende- and mica bearing lamprophyres. Geochemical studies, including fractional crystallisation, combine assimilation-fractional crystallisation (AFC) show that these are mafic, LILE and LREE enriched melts derived by low degrees of partial melting of a subduction-modified mantle source. It is suggested that the source of the lamprophyres is "Lake District" lithosphere, metasomatised by Lower Palaeozoic subduction, and thrust under the southern part of the Southern Uplands. AFC modelling using chemical and isotopic data further suggest that there is a close genetic link between the lamprophyres and the Criffell-Dalbeattie granitoids and that lamprophyres represent the mantle derived precursors of the Criffell-Dalbeattie granitoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this work was two fold, firstly to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigon ox 101, Tl 01) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with increasing the DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. Compared to a conventional EPR-g-GMACONV (in the absence of a comonomer), the presence of the comonomer DVB in the grafting system was shown to result in more branching and crosslinking (shown from an increase in melt flow index (MFI) and torque values) and this was paralleled by an increase in DVB concentration. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this. reflects that the side reactions were favorable in the conventional grafting system. The second aim was to examine the effect of the in-situ functionalised EPR when used as a compatibiliser for binary blends. It was found that blending PET with functionalised EPR (ƒ-EPR) gave a significant improvement in terms of blend morphology as well as mechanical properties. The results showed clearly that, blending PET with ƒ-EPRDVB (prepared with DVB) was much more effective compared to the corresponding PET/ƒ-EPRCONV (without DVB) blends in which ƒ-EPRDVB having optimum grafting level of 2.1 wt% gave the most pronounced effect on the morphology and mechanical properties. On the other hand, blends of PET/ƒ-EPRDVB containing high GMA/DVB ratio was found to be unfavorable hence exhibited lower tensile properties and showed unfavorable morphology. The presence of high polyGMA concentration in ƒ-EPRCONV was found to create damaging effect on its morphology, hence resulting in reduced tensile properties (e.g. low elongation at break). However, the use of commercial terpolymers based on ethylene-methacrylate-glycidyl methacrylate (EM-GMA)or a copolymer of ethylene-glycidyl methacrylate (E-GMA) containing various GMA levels as compatibilisers in PET/EPR blends was found to be more efficient compared to PET/EPR/ƒ-EPR blends with the former blends showing finer morphology and high elongation at break. The high efficiency of the terpolymers or copolymers in compatibilising the PET/EPR blends is suggested to be partly, higher GMA content compared to the amount in ƒ-EPR and due to its low viscosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The melt stabilising efficiency of antioxidants with different structures based on hindered phenols, phosphite esters, phosphonite and a lactone was examined during multi-pass extrusions at 265 °C in three metallocene ethylene-1-octene copolymers (m-LLDPE) having different extent of short chain branching (SCB) and one Zeigler copolymer (z-LLDPE) containing the same level of SCB corresponding to one of the m-LLDPE polymers. The effect of the different antioxidants, when used separately and in combination, was investigated by characterising the changes in the polymer's rheological behaviour, colour formation and structural changes based on unsaturated groups and carbonyl content during five multi-pass extrusions. The results showed that all stabilisation systems examined offered higher efficiency in the metallocene polymers compared to the Zeigler. The effect of the extent of SCB in the metallocene polymers on the stabilising efficacy of the antioxidant systems was also examined, and it was shown that it had a significant effect, with both single and combinations of antioxidants giving higher efficiency in the m-LLDPE polymer containing higher extent of SCB. The presence of the lactone HP136 in mixtures containing hindered phenol–phosphite antioxidant systems gave a higher melt stabilisation efficiency than in its absence and this has been attributed to a co-operative antioxidant reaction steps that take place between the antioxidants resulting in the possible regeneration of the lactone antioxidant through a redox reaction. In all the metallocene PE polymers examined, the biologically hindered phenol, Irganox E, was shown to be more effective than the conventionally hindered phenol Irganox 1076, when examined alone or in combination with phosphite esters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of organically modified clay on the morphology, rheology and mechanical properties of high-density polyethylene (HDPE) and polyamide 6 (PA6) blends (HDPE/PA6 = 75/25 parts) is studied. Virgin and filled blends were prepared by melt compounding the constituents using a twin-screw extruder. The influence of the organoclay on the morphology of the hybrid was deeply investigated by means of wide-angle X-ray diffractometry, transmission and scanning electron microscopies and quantitative extraction experiments. It has been found that the organoclay exclusively places inside the more hydrophilic polyamide phase during the melt compounding. The extrusion process promotes the formation of highly elongated and separated organoclay-rich PA6 domains. Despite its low volume fraction, the filled minor phase eventually merges once the extruded pellets are melted again, giving rise to a co-continuous microstructure. Remarkably, such a morphology persists for long time in the melt state. A possible compatibilizing action related to the organoclay has been investigated by comparing the morphology of the hybrid blend with that of a blend compatibilized using an ethylene–acrylic acid (EAA) copolymer as a compatibilizer precursor. The former remains phase separated, indicating that the filler does not promote the enhancement of the interfacial adhesion. The macroscopic properties of the hybrid blend were interpreted in the light of its morphology. The melt state dynamics of the materials were probed by means of linear viscoelastic measurements. Many peculiar rheological features of polymer-layered silicate nanocomposites based on single polymer matrix were detected for the hybrid blend. The results have been interpreted proposing the existence of two distinct populations of dynamical species: HDPE not interacting with the filler, and a slower species, constituted by the organoclay-rich polyamide phase, which slackened dynamics stabilize the morphology in the melt state. In the solid state, both the reinforcement effect of the filler and the co-continuous microstructure promote the enhancement of the tensile modulus. Our results demonstrate that adding nanoparticles to polymer blends allows tailoring the final properties of the hybrid, potentially leading to high-performance materials which combine the advantages of polymer blends and the merits of polymer nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in polymer optical fibre (POF). Possible fabrication techniques were discussed to fabricate FBGs in polymer optical fibre including a detailed description of the phase mask inscription technique used to fabricate FBGs in both single and multi mode microstructured polymer optical fibre (mPOF). Complementing the fabrication of polymer optical fibre Bragg gratings (POFBGs), a technique has been developed to permanently splice POF to silica optical fibre with the use of an optical adhesive. This allowed for the fabricated POFBGs to be characterised away from the optical table, allowing for application specific characterisation. Furthermore Bragg gratings have been fabricated in polymer POF with a Bragg response within the 800nm spectral region. Within this spectral region, POF predominantly manufactured from PMMA experiences considerably smaller attenuation losses when compared to the attenuation losses within the 1550nm spectral region. The effect of thermally annealing fabricated POFBGs has been studied. This included demonstrating the ability to tune the Bragg wavelength of a POFBG sensor to a desired wavelength. Thermal annealing has also been used to manufacture wavelength division multiplexed sensors with the use of a single phase mask. Finally POFBGs have been fabricated in Topas Cyclic Olefin Copolymer. Fabrication of Bragg gratings within this copolymer allowed for the first demonstration of near immunity to relative humidity whilst monitoring changes in temperature of the environment the POFBG sensor was in. Bragg gratings fabricated in the Topas copolymer demonstrated sensitivity to relative humidity which was 65 times less than that of a PMMA based POFBG sensor. This decrease in sensitivity has the potential to significantly reduce the potential of cross sensitivity to relative humidity whilst being employed to monitor measurands such as temperature and axial strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel transition temperature in MeAM copolymer microgels is reported. Despite the fact that MeAM homopolymers do not show thermosensitive properties, a specific synthetic strategy leads to a thermo-responsive swelling behavior that could be potentially useful in medical and/or industrial applications. The pH and temperature-dependent swelling response of microgels of MeAM copolymerized with 2-aminomethylpyridine and ethylenediamine is reported. The changes in particle sizes, which depend on the nature of the surrounding environment, are recorded by QELS. The relation between copolymer structure and its novel behavior is analyzed by several techniques (1H NMR, TGA).