971 resultados para CLOCK GENES EXPRESSION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We isolated major histocompatibility complex class II B (MHCIIB) genes in the Barn owl (Tyto alba). A PCR-based approach combined with primer walking on genomic and complementary DNA as well as Southern blot analyses revealed the presence of two MHCIIB genes, both being expressed in spleen, liver, and blood. Characteristic structural features of MHCIIB genes as well as their expression and high non-synonymous substitution rates in the region involved in antigen binding suggest that both genes are functional. MHC organization in the Barn owl is simple compared to passerine species that show multiple duplications, and resembles the minimal essential MHC of chicken.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sarcomas are heterogeneous and aggressive mesenchymal tumors. Histological grading has so far been the best predictor for metastasis-free survival, but it has several limitations, such as moderate reproducibility and poor prognostic value for some histological types. To improve patient grading, we performed genomic and expression profiling in a training set of 183 sarcomas and established a prognostic gene expression signature, complexity index in sarcomas (CINSARC), composed of 67 genes related to mitosis and chromosome management. In a multivariate analysis, CINSARC predicts metastasis outcome in the training set and in an independent 127 sarcomas validation set. It is superior to the Fédération Francaise des Centres de Lutte Contre le Cancer grading system in determining metastatic outcome for sarcoma patients. Furthermore, it also predicts outcome for gastrointestinal stromal tumors (GISTs), breast carcinomas and lymphomas. Application of the signature will permit more selective use of adjuvant therapies for people with sarcomas, leading to decreased iatrogenic morbidity and improved outcomes for such individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Association studies have revealed expression quantitative trait loci (eQTLs) for a large number of genes. However, the causative variants that regulate gene expression levels are generally unknown. We hypothesized that copy-number variation of sequence repeats contribute to the expression variation of some genes. Our laboratory has previously identified that the rare expansion of a repeat c.-174CGGGGCGGGGCG in the promoter region of the CSTB gene causes a silencing of the gene, resulting in progressive myoclonus epilepsy. Here, we genotyped the repeat length and quantified CSTB expression by quantitative real-time polymerase chain reaction in 173 lymphoblastoid cell lines (LCLs) and fibroblast samples from the GenCord collection. The majority of alleles contain either two or three copies of this repeat. Independent analysis revealed that the c.-174CGGGGCGGGGCG repeat length is strongly associated with CSTB expression (P = 3.14 × 10(-11)) in LCLs only. Examination of both genotyped and imputed single-nucleotide polymorphisms (SNPs) within 2 Mb of CSTB revealed that the dodecamer repeat represents the strongest cis-eQTL for CSTB in LCLs. We conclude that the common two or three copy variation is likely the causative cis-eQTL for CSTB expression variation. More broadly, we propose that polymorphic tandem repeats may represent the causative variation of a fraction of cis-eQTLs in the genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrP(sc)) of the natural cellular prion protein (PrP(c)) encoded by the Prnp gene. Although several roles have been attributed to PrP(c), its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrP(c) studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Principal Findings: Here we explore the role of PrP(c) expression in neurotransmission and neural excitability using wild-type, Prnp -/- and PrP(c)-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp -/- mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp -/- and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABA(A) and AMPA-kainate receptors are co-regulated in both Prnp -/- and Tg20 mice. Conclusions/Significance: Present results demonstrate that PrP(c) is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABA(A) and AMPA-Kainate neurotransmission. New PrP(c) functions have recently been described, which point to PrP(c) as a target for putative therapies in Alzheimer's disease. However, our results indicate that a "gain of function" strategy in Alzheimer's disease, or a "loss of function" in prionopathies, may impair PrP(c) function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Microglia and astrocytes respond to homeostatic disturbances with profound changes of gene expression. This response, known as glial activation or neuroinflammation, can be detrimental to the surrounding tissue. The transcription factor CCAAT/enhancer binding protein ß (C/EBPß) is an important regulator of gene expression in inflammation but little is known about its involvement in glial activation. To explore the functional role of C/EBPß in glial activation we have analyzed pro-inflammatory gene expression and neurotoxicity in murine wild type and C/EBPß-null glial cultures. Methods. Due to fertility and mortality problems associated with the C/EBPß-null genotype we developed a protocol to prepare mixed glial cultures from cerebral cortex of a single mouse embryo with high yield. Wild-type and C/EBPß-null glial cultures were compared in terms of total cell density by Hoechst-33258 staining; microglial content by CD11b immunocytochemistry; astroglial content by GFAP western blot; gene expression by quantitative real-time PCR, western blot, immunocytochemistry and Griess reaction; and microglial neurotoxicity by estimating MAP2 content in neuronal/microglial cocultures. C/EBPß DNA binding activity was evaluated by electrophoretic mobility shift assay and quantitative chromatin immunoprecipitation. Results. C/EBPß mRNA and protein levels, as well as DNA binding, were increased in glial cultures by treatment with lipopolysaccharide (LPS) or LPS + interferon ¿ (IFN¿). Quantitative chromatin immunoprecipitation showed binding of C/EBPß to pro-inflammatory gene promoters in glial activation in a stimulus- and gene-dependent manner. In agreement with these results, LPS and LPS+IFN¿ induced different transcriptional patterns between pro-inflammatory cytokines and NO synthase-2 genes. Furthermore, the expressions of IL-1ß and NO synthase-2, and consequent NO production, were reduced in the absence of C/EBPß. In addition, neurotoxicity elicited by LPS+IFN¿-treated microglia co-cultured with neurons was completely abolished by the absence of C/EBPß in microglia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Diverse microarray and sequencing technologies have been widely used to characterise the molecular changes in malignant epithelial cells in breast cancers. Such gene expression studies to identify markers and targets in tumour cells are, however, compromised by the cellular heterogeneity of solid breast tumours and by the lack of appropriate counterparts representing normal breast epithelial cells. METHODS: Malignant neoplastic epithelial cells from primary breast cancers and luminal and myoepithelial cells isolated from normal human breast tissue were isolated by immunomagnetic separation methods. Pools of RNA from highly enriched preparations of these cell types were subjected to expression profiling using massively parallel signature sequencing (MPSS) and four different genome wide microarray platforms. Functional related transcripts of the differential tumour epithelial transcriptome were used for gene set enrichment analysis to identify enrichment of luminal and myoepithelial type genes. Clinical pathological validation of a small number of genes was performed on tissue microarrays. RESULTS: MPSS identified 6,553 differentially expressed genes between the pool of normal luminal cells and that of primary tumours substantially enriched for epithelial cells, of which 98% were represented and 60% were confirmed by microarray profiling. Significant expression level changes between these two samples detected only by microarray technology were shown by 4,149 transcripts, resulting in a combined differential tumour epithelial transcriptome of 8,051 genes. Microarray gene signatures identified a comprehensive list of 907 and 955 transcripts whose expression differed between luminal epithelial cells and myoepithelial cells, respectively. Functional annotation and gene set enrichment analysis highlighted a group of genes related to skeletal development that were associated with the myoepithelial/basal cells and upregulated in the tumour sample. One of the most highly overexpressed genes in this category, that encoding periostin, was analysed immunohistochemically on breast cancer tissue microarrays and its expression in neoplastic cells correlated with poor outcome in a cohort of poor prognosis estrogen receptor-positive tumours. CONCLUSION: Using highly enriched cell populations in combination with multiplatform gene expression profiling studies, a comprehensive analysis of molecular changes between the normal and malignant breast tissue was established. This study provides a basis for the identification of novel and potentially important targets for diagnosis, prognosis and therapy in breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. Results The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) was determined with the aid of the specific GeneChip® Rat Genome 230 2.0 (Affymettrix). Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2), actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Conclusions Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Candida glabrata, the transcription factor CgPdr1 is involved in resistance to azole antifungals via upregulation of ATP binding cassette (ABC)-transporter genes including at least CgCDR1, CgCDR2 and CgSNQ2. A high diversity of GOF (gain-of-function) mutations in CgPDR1 exists for the upregulation of ABC-transporters. These mutations enhance C. glabrata virulence in animal models, thus indicating that CgPDR1 might regulate the expression of yet unidentified virulence factors. We hypothesized that CgPdr1-dependent virulence factor(s) should be commonly regulated by all GOF mutations in CgPDR1. As deduced from transcript profiling with microarrays, a high number of genes (up to 385) were differentially regulated by a selected number (7) of GOF mutations expressed in the same genetic background. Surprisingly, the transcriptional profiles resulting from expression of GOF mutations showed minimal overlap in co-regulated genes. Only two genes, CgCDR1 and PUP1 (for PDR1upregulated and encoding a mitochondrial protein), were commonly upregulated by all tested GOFs. While both genes mediated azole resistance, although to different extents, their deletions in an azole-resistant isolate led to a reduction of virulence and decreased tissue burden as compared to clinical parents. As expected from their role in C. glabrata virulence, the two genes were expressed as well in vitro and in vivo. The individual overexpression of these two genes in a CgPDR1-independent manner could partially restore phenotypes obtained in clinical isolates. These data therefore demonstrate that at least these two CgPDR1-dependent and -upregulated genes contribute to the enhanced virulence of C. glabrata that acquired azole resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: The degree of conservation of gene expression between homologous organs largely remains an open question. Several recent studies reported some evidence in favor of such conservation. Most studies compute organs' similarity across all orthologous genes, whereas the expression level of many genes are not informative about organ specificity. RESULTS: Here, we use a modularization algorithm to overcome this limitation through the identification of inter-species co-modules of organs and genes. We identify such co-modules using mouse and human microarray expression data. They are functionally coherent both in terms of genes and of organs from both organisms. We show that a large proportion of genes belonging to the same co-module are orthologous between mouse and human. Moreover, their zebrafish orthologs also tend to be expressed in the corresponding homologous organs. Notable exceptions to the general pattern of conservation are the testis and the olfactory bulb. Interestingly, some co-modules consist of single organs, while others combine several functionally related organs. For instance, amygdala, cerebral cortex, hypothalamus and spinal cord form a clearly discernible unit of expression, both in mouse and human. CONCLUSIONS: Our study provides a new framework for comparative analysis which will be applicable also to other sets of large-scale phenotypic data collected across different species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene expression often cycles between active and inactive states in eukaryotes, yielding variable or noisy gene expression in the short-term, while slow epigenetic changes may lead to silencing or variegated expression. Understanding how cells control these effects will be of paramount importance to construct biological systems with predictable behaviours. Here we find that a human matrix attachment region (MAR) genetic element controls the stability and heritability of gene expression in cell populations. Mathematical modeling indicated that the MAR controls the probability of long-term transitions between active and inactive expression, thus reducing silencing effects and increasing the reactivation of silent genes. Single-cell short-terms assays revealed persistent expression and reduced expression noise in MAR-driven genes, while stochastic burst of expression occurred without this genetic element. The MAR thus confers a more deterministic behavior to an otherwise stochastic process, providing a means towards more reliable expression of engineered genetic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent availability of the chicken genome sequence poses the question of whether there are human protein-coding genes conserved in chicken that are currently not included in the human gene catalog. Here, we show, using comparative gene finding followed by experimental verification of exon pairs by RT-PCR, that the addition to the multi-exonic subset of this catalog could be as little as 0.2%, suggesting that we may be closing in on the human gene set. Our protocol, however, has two shortcomings: (i) the bioinformatic screening of the predicted genes, applied to filter out false positives, cannot handle intronless genes; and (ii) the experimental verification could fail to identify expression at a specific developmental time. This highlights the importance of developing methods that could provide a reliable estimate of the number of these two types of genes.