992 resultados para CHEMICALLY PATTERNED SURFACES
Resumo:
L’objectif de cette étude était d’évaluer et de comparer la force d’adhésion de deux résines de collage: le ClearfilTM Esthetic Cement & DC Bond Kit (C) et le RelyXTM Unicem (R), sur trois adhérents différents : une surface d’émail, un alliage de métaux non précieux (Np) et un alliage de métaux semi-précieux (Sp). La surface des échantillons des alliages métalliques a subi différents traitements de surface. Sur l’émail (n=15) ainsi que sur les plaquettes d’alliages Np et Sp (n=15), des cylindres de résine étaient appliqués et polymérisés. Suite au processus de collage, les échantillons ont été incubés à 37°C pendant 24 heures, puis ont subi 500 cycles de thermocyclage. Des tests de cisaillement ont été effectués, suivi par l’analyse de la surface des échantillons au microscope à balayage électronique. Une comparaison de type T-test et des comparaisons multiples post hoc, ont été effectuées pour l’analyse statistique (p 0,05). Sur l’émail, les résultats ont démontré que la résine C présentait une force d'adhésion moyenne statistiquement supérieure (33,97±17,18 MPa) à la résine R (10,48±11,23 MPa) (p 0,05). Le type d’alliage utilisé n’influençait pas la force d’adhésion, et ce, peu importe le type de résine de collage (p>0,05). Pour le groupe Sp, la résine C a démontré une adhésion statistiquement supérieure à la résine R, et ce, pour tous les traitements de surface (p 0,05). En conclusion, la résine C a démontré des résultats d’adhésion significativement supérieurs à la résine R sur l’émail ainsi que sur presque toutes les surfaces traitées des alliages de métaux.
Resumo:
La représentation d'une surface, son lissage et son utilisation pour l'identification, la comparaison, la classification, et l'étude des variations de volume, de courbure ou de topologie sont omniprésentes dans l'aire de la numérisation. Parmi les méthodes mathématiques, nous avons retenu les transformations difféomorphiques d'un pattern de référence. Il y a un grand intérêt théorique et numérique à approcher un difféomorphisme arbitraire par des difféomorphismes engendrés par des champs de vitesses. Sur le plan théorique la question est : "est-ce que le sous-groupe de difféomorphismes engendrés par des champs de vitesses est dense dans le groupe plus large de Micheletti pour la métrique de Courant ?" Malgré quelques progrès réalisés ici, cette question demeure ouverte. Les pistes empruntées ont alors convergé vers le sous-groupe de Azencott et de Trouvé et sa métrique dans le cadre de l'imagerie. Elle correspond à une notion de géodésique entre deux difféomorphismes dans leur sous-groupe. L'optimisation est utilisée pour obtenir un système d'équations état adjoint caractérisant la solution optimale du problème d'identification à partir des observations. Cette approche est adaptée à l'identification de surfaces obtenues par un numériseur tel que, par exemple, le scan d'un visage. Ce problème est beaucoup plus difficile que celui d'imagerie. On doit alors introduire un système de référence courbe et une surface à facettes pour les calculs. On donne la formulation du problème d'identification et du calcul du changement de volume par rapport à un scan de référence.
Resumo:
L’objectif de ce mémoire de maîtrise est de développer et de caractériser diverses sources de neutres réactifs destinées à des études fondamentales des interactions plasmas-surfaces. Ce projet s’inscrit dans le cadre d’une vaste étude de la physique des interactions plasmas-parois mises en jeu dans les procédés de gravure par plasma des matériaux de pointe. Une revue de la littérature scientifique sur les diverses méthodes permettant de générer des faisceaux de neutres réactifs nous a permis de sélectionner deux types de sources. La première, une source pyrolitique, a été caractérisée par spectrométrie de masse en utilisant le C2F6 comme molécule mère. Nous avons montré que le C2F6 était dissocié à plus de 90% à 1000ºC et qu’il formait du CF4, lui-même dissocié en CF2 vers 900ºC. Ces résultats ont été validés à l’aide d’un modèle basé sur des calculs d’équilibres chimiques, qui a aussi prédit la formation de F à 1500ºC. La seconde source, un plasma entretenu par une onde électromagnétique de surfaces, a été caractérisée par spectroscopie optique d’émission et par interférométrie haute fréquence. Dans le cas du plasma d’argon créé par un champ électromagnétique (>GHz), nos travaux ont révélé une distribution en énergie des électrons à trois températures avec Te-low>Te-high
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Les surfaces de subdivision fournissent une méthode alternative prometteuse dans la modélisation géométrique, et ont des avantages sur la représentation classique de trimmed-NURBS, en particulier dans la modélisation de surfaces lisses par morceaux. Dans ce mémoire, nous considérons le problème des opérations géométriques sur les surfaces de subdivision, avec l'exigence stricte de forme topologique correcte. Puisque ce problème peut être mal conditionné, nous proposons une approche pour la gestion de l'incertitude qui existe dans le calcul géométrique. Nous exigeons l'exactitude des informations topologiques lorsque l'on considère la nature de robustesse du problème des opérations géométriques sur les modèles de solides, et il devient clair que le problème peut être mal conditionné en présence de l'incertitude qui est omniprésente dans les données. Nous proposons donc une approche interactive de gestion de l'incertitude des opérations géométriques, dans le cadre d'un calcul basé sur la norme IEEE arithmétique et la modélisation en surfaces de subdivision. Un algorithme pour le problème planar-cut est alors présenté qui a comme but de satisfaire à l'exigence topologique mentionnée ci-dessus.
Resumo:
Ce mémoire s'inscrit dans le domaine de la vision par ordinateur. Elle s'intéresse à la calibration de systèmes de caméras stéréoscopiques, à la mise en correspondance caméra-projecteur, à la reconstruction 3D, à l'alignement photométrique de projecteurs, au maillage de nuages de points, ainsi qu'au paramétrage de surfaces. Réalisé dans le cadre du projet LightTwist du laboratoire Vision3D, elle vise à permettre la projection sur grandes surfaces arbitraires à l'aide de plusieurs projecteurs. Ce genre de projection est souvent utilisé en arts technologiques, en théâtre et en projection architecturale. Dans ce mémoire, on procède au calibrage des caméras, suivi d'une reconstruction 3D par morceaux basée sur une méthode active de mise en correspondance, la lumière non structurée. Après un alignement et un maillage automatisés, on dispose d'un modèle 3D complet de la surface de projection. Ce mémoire introduit ensuite une nouvelle approche pour le paramétrage de modèles 3D basée sur le calcul efficace de distances géodésiques sur des maillages. L'usager n'a qu'à délimiter manuellement le contour de la zone de projection sur le modèle. Le paramétrage final est calculé en utilisant les distances obtenues pour chaque point du modèle. Jusqu'à maintenant, les méthodes existante ne permettaient pas de paramétrer des modèles ayant plus d'un million de points.
Resumo:
L’implantation répandue de nouveaux quartiers résidentiels sur le territoire de la périphérie urbaine est en partie responsable de la baisse du couvert végétal et de l’augmentation des surfaces imperméables à grande échelle. Les villes sont maintenant aux prises avec une augmentation constante de la production de ruissellement qu'elles doivent gérer au moyen d’un vaste réseau d’égouts et de canalisations. Des données sur les impacts de ces modèles de quartier résidentiel nous révèlent que cette forme d’habitat provoque la dégradation des milieux naturels et aquatiques. La présente étude vise à mettre à l’épreuve la stratégie d’aménagement de l’Open space design en comparant l’effet de trois situations d’aménagement d’ensembles résidentiels sur le coefficient de ruissellement pondéré (Cp). Les trois situations étudiées sont 1 : le développement actuel tel que conçu par le promoteur, 2 : un scénario de quartier visant la préservation des cours d’eau existants ainsi qu’une réduction des lots et des surfaces imperméables et 3 : un quartier avec des types d’habitation plus denses. Les coefficients pondérés obtenus sont respectivement de 0,50 pour le quartier actuel, de 0,40 pour le scénario 1 et de 0,34 pour le scénario 2. Au terme de cet exercice, il apparaît, d’une part, que la densification du bâti, la nature des surfaces et l’organisation spatiale peuvent concourir à diminuer la production de ruissellement d’un quartier. Cette étude permet de situer l’importance de la gestion du ruissellement dans la planification et l’aménagement du territoire.
Resumo:
Dans cette thèse, nous analysons les propriétés géométriques des surfaces obtenues des solutions classiques des modèles sigma bosoniques et supersymétriques en deux dimensions ayant pour espace cible des variétés grassmanniennes G(m,n). Plus particulièrement, nous considérons la métrique, les formes fondamentales et la courbure gaussienne induites par ces surfaces naturellement plongées dans l'algèbre de Lie su(n). Le premier chapitre présente des outils préliminaires pour comprendre les éléments des chapitres suivants. Nous y présentons les théories de jauge non-abéliennes et les modèles sigma grassmanniens bosoniques ainsi que supersymétriques. Nous nous intéressons aussi à la construction de surfaces dans l'algèbre de Lie su(n) à partir des solutions des modèles sigma bosoniques. Les trois prochains chapitres, formant cette thèse, présentent les contraintes devant être imposées sur les solutions de ces modèles afin d'obtenir des surfaces à courbure gaussienne constante. Ces contraintes permettent d'obtenir une classification des solutions en fonction des valeurs possibles de la courbure. Les chapitres 2 et 3 de cette thèse présentent une analyse de ces surfaces et de leurs solutions classiques pour les modèles sigma grassmanniens bosoniques. Le quatrième consiste en une analyse analogue pour une extension supersymétrique N=2 des modèles sigma bosoniques G(1,n)=CP^(n-1) incluant quelques résultats sur les modèles grassmanniens. Dans le deuxième chapitre, nous étudions les propriétés géométriques des surfaces associées aux solutions holomorphes des modèles sigma grassmanniens bosoniques. Nous donnons une classification complète de ces solutions à courbure gaussienne constante pour les modèles G(2,n) pour n=3,4,5. De plus, nous établissons deux conjectures sur les valeurs constantes possibles de la courbure gaussienne pour G(m,n). Nous donnons aussi des éléments de preuve de ces conjectures en nous appuyant sur les immersions et les coordonnées de Plücker ainsi que la séquence de Veronese. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Le troisième chapitre présente une analyse des surfaces à courbure gaussienne constante associées aux solutions non-holomorphes des modèles sigma grassmanniens bosoniques. Ce travail généralise les résultats du premier article et donne un algorithme systématique pour l'obtention de telles surfaces issues des solutions connues des modèles. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Dans le dernier chapitre, nous considérons une extension supersymétrique N=2 du modèle sigma bosonique ayant pour espace cible G(1,n)=CP^(n-1). Ce chapitre décrit la géométrie des surfaces obtenues des solutions du modèle et démontre, dans le cas holomorphe, qu'elles ont une courbure gaussienne constante si et seulement si la solution holomorphe consiste en une généralisation de la séquence de Veronese. De plus, en utilisant une version invariante de jauge du modèle en termes de projecteurs orthogonaux, nous obtenons des solutions non-holomorphes et étudions la géométrie des surfaces associées à ces nouvelles solutions. Ces résultats sont soumis dans la revue Communications in Mathematical Physics.
Resumo:
Un protocole inspiré du test de simulation 309 de l’Organisation de coopération et de développement économiques (OCDE) nous a permis de mesurer la dégradation chimique (excluant la photolyse) dans des eaux de surface de même que la dégradation chimique et biologique de neuf contaminants émergents dans l’effluent d’un décanteur primaire d’eau usée municipale. Les données étaient compatibles avec le modèle de cinétique de pseudo ordre un. Les résultats démontrant une persistance de plus d’un an dans les eaux de surface et de 71 jours dans l’effluent du décanteur primaire suggèrent que les dégradations chimique et biologique ne contribuent pas significativement à la diminution de: atrazine, déséthylatrazine, carbamazépine et diclofénac dans la phase aqueuse des systèmes testés. Les autres composés se sont dégradés à différents niveaux. Le 17ß-estradiol ainsi que l’éthinylestradiol, la noréthindrone, la caféine et le sulfaméthoxazole ont tous été sujet à la dégradation biologique dans les effluents du décanteur primaire d’eau usée avec des constantes de dégradation k et des demi-vies t1/2 mesurées allant respectivement de 0.0082 à 0.59 j-1 et de 1.2 à 85 jours. Les paramètres de cinétique mesurés peuvent être combinés aux concentrations typiques des composés à l’étude dans un décanteur primaire d’eau usée pour y calculer leur vitesse de dégradation. Cependant, puisque les décanteurs primaires dans les usines de traitement d’eaux usées ont généralement des temps de résidence de quelques heures seulement, il est improbable que les neufs contaminants émergents à l’étude diminuent significativement par ces processus durant leur passage dans le compartiment.
Resumo:
Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal.
Resumo:
Vacuum-ultraviolet (VUV) irradiation (kexc: 172 ± 12 nm) of polystyrene films in the presence of oxygen produced not only oxidatively functionalized surfaces, but generated also morphological changes. Whereas OH- and C=O-functionalized surfaces might be used for e.g. secondary functionalization, enhanced aggregation or printing, processes leading to morphological changes open new possibilities of microstructurization. Series of experiments made under different experimental conditions brought evidence of two different reaction pathways: introduction of OH- and C=O-groups at the polystyrene pathways is mainly due to the reaction of reactive oxygen species (hydroxyl radicals, atomic oxygen, ozone) produced in the gas phase between the VUV-radiation source and the substrate. However, oxidative fragmentation leading to morphological changes, oxidation products of low molecular weight and eventually to mineralization of the organic substrate is initiated by electronic excitation of the polymer leading to C–C-bond homolysis and to a complex oxidation manifold after trapping of the C-centred radicals by molecular oxygen. The pathways of oxidative functionalization or fragmentation could be differentiated by FTIR-ATR analysis of irradiated polystyrene surfaces before and after washing with acetonitrile and microscopic fluorescence analysis of the surfaces secondarily functionalized with the N,N,N-tridodecyl-triaza-triangulenium (TATA) cation. Ozonization of the polystyrene leads to oxidative functionalization of the polymer surface but cannot initiate the fragmentation of the polymer backbone. Oxidative fragmentation is initiated by electronic excitation of the polymer (contact-mode AFM analysis), and evidence of the generation of intermediate C-centred radicals is given e.g. by experiments in the absence of oxygen leading to cross-linking (solubility effects, optical microscopy, friction-mode AFM) and disproportionation (fluorescence).