998 resultados para CERAMIC-CARBON
Resumo:
Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.
Resumo:
Electric-field induced nonlinear actuation behavior is demonstrated in a bulk nanotube (CNT) structure under ambient conditions. Completely recoverable and non-degradable actuation over several cycles of electric-field is measured in these structures. A symmetric and polarity independent displacement corresponding up to an axial strain of 14% is measured upon application of a low strength electric field of 4.2 kV/m in the axial direction. However, a much lower strain of similar to 1% is measured in the radial (or, transverse) direction. Furthermore, the electric field induced actuation increases by more than a factor of 2 upon impregnating the CNT cellular structure with copper oxide nano-particles. An electrostriction mechanism, based on the electric-field induced polarization of CNT strands, is proposed to account for the reported actuation behavior. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We report the growth of carbon nanoflakes (CNFs) on Si substrate by the hot filament chemical vapor deposition without the substrate bias or the catalyst. CNFs were grown using the single wall carbon nanotubes and the multiwall carbon nanotubes as the nucleation center, in the Ar-rich CH4-H-2-Ar precursor gas mixture with 1% CH4, at the chamber pressure and the substrate temperature of 7.5 Ton and 840 degrees C, respectively. In the H-2-rich condition, CNF synthesis failed due to severe etch-removal of carbon nanotubes (CNTs) while it was successful at the optimized Ar-rich condition. Other forms of carbon such as nano-diamond or mesoporous carbon failed to serve as the nucleation centers for the CNF growth. We proposed a mechanism of the CNF synthesis from the CNTs, which involved the initial unzipping of CNTs by atomic hydrogen and subsequent nucleation and growth of CNFs from the unzipped portion of the graphene layers. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Carbon nanotubes (CNT) due to its multifunctional characteristics has been presented as a flame sensor by combining both radiation and chemical sensitivity. Chemical functionalization enhances the sensitivity of CNT sensor toward any chemical modifications that are induced by the flame. Response of the sensor is revealed to be dependent on the measurement direction (longitudinal and transverse) as well as the radiation intensity. A nonlinear relation between the sensitivity and its distance from the source is used to calibrate the intensity of the flame. The present method allows a simpler approach for the flame detection by utilizing a calibration scheme to operate at any particular bias current and tune its sensitivity with respect to any working distance at a particular bias current. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the electrical transport behavior of carbon nanotubes (CNTs) upon exposure to organic analytes (namely ethanol, benzene, acetone and toluene). The resulting nonlinear current-voltage characteristics revealed a power law dependence of the differential conductivity on the applied bias voltage. Moreover, suppression of differential conductivity at zero bias is found to be dependent on different selective analytes. The power law exponent values have been monitored before, during and after exposure to the chemicals, which revealed a reversible change in the number of electron conducting channels. Therefore, the reduction in the number of conductive paths can be attributed to the interaction of the chemical analyte on the CNT surfaces, which causes a decrease in the differential conductivity of the CNT sample. These results demonstrate chemical selectivity of CNTs due to varying electronic interaction with different chemical analytes.
Resumo:
Microstereolithography (MSL) is a rapid prototyping technique to fabricate complex three-dimensional (3D) structure in the microdomain involving different materials such as polymers and ceramics. The present effort is to fabricate microdimensional ceramics by the MSL system from a non-aqueous colloidal slurry of alumina. This slurry predominantly consists of two phases i.e. sub-micrometer solid alumina particles and non-aqueous reactive difunctional and trifunctional acrylates with inert diluent. The first part of the work involves the study of the stability and viscosity of the slurry using different concentrations of trioctyl phosphine oxide (TOPO) as a dispersant. Based on the optimization, the highest achievable solid loadings of alumina has been determined for this particular colloidal suspension. The second part of the study highlights the fabrication of several micro-dimensional alumina structures by the MSL system. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
In this Letter, we present a non-contact method of controlling and monitoring photomechanical actuation in carbon nanotubes (CNT) by exposing it to ultra-violet radiation at different pulse rates (10 to 200 Hz). This is accomplished by imparting a reversible photo induced strain (5-330 mu epsilon) on CNT coated fibre Bragg gratings; CNT undergoes an internal reversible structural change due to cyclic photon absorption that leads to the development of mechanical strain, which in turn allows reversible switching of the Bragg wavelength. The results also reveal an interesting pulse rate dependent rise and fall times of photomechanical actuation in CNT. (C) 2014 AIP Publishing LLC.
Resumo:
Single-walled nanohorns (SWNHs) have been prepared by sub-merged arc discharge of graphite electrodes in liquid nitrogen. The samples were examined by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Nitrogen and boron doped SWNHs have been prepared by the sub-merged arc discharge method using melamine and elemental boron as precursors. Intensification of Raman D-band and stiffening of G-band has been observed in the doped samples. The electrical resistance of the SWNHs varies in opposite directions with nitrogen and boron doping. Functionalization of SWNHs through amidation has been carried out for solubilizing them in non-polar solvents. Water-soluble SWNHs have been produced by acid treatment and non-covalent functionalization with a coronene salt. SWNHs have been decorated with nanoparticles of Au, Ag and Pt. Interaction of electron donor (tetrathiafulvalene, TTF) and acceptor molecules (tetracyanoethylene, TCNE) with SWNHs has been investigated by Raman spectroscopy. Progressive softening and stiffening of Raman G-band has been observed respectively with increase in the concentration of TTF and TCNE.
Resumo:
Bacterial infection remains an important risk factor after orthopedic surgery. The present paper reports the synthesis of hydroxyapatite-silver (HA-Ag) and carbon nanotube-silver (CNT-Ag) composites via spark plasma sintering (SPS) route. The retention of the initial phases after SPS was confirmed by phase analysis using X-ray diffraction and Raman spectroscopy. Energy dispersive spectrum analysis showed that Ag was distributed uniformly in the CNT/HA matrix. The breakage of CNTs into spheroid particles at higher temperatures (1700 degrees C) is attributed to the Rayleigh instability criterion. Mechanical properties (hardness and elastic modulus) of the samples were evaluated using nanoindentation testing. Ag reinforcement resulted in the enhancement of hardness (by similar to 15%) and elastic modulus (similar to 5%) of HA samples, whereas Ag reinforcement in CNT, Ag addition does not have much effect on hardness (0.3 GPa) and elastic modulus (5 GPa). The antibacterial tests performed using Escherichia coli and Staphylococcus epidermidis showed significant decrease (by similar to 65-86%) in the number of adhered bacteria in HA/CNT composites reinforced with 5% Ag nanoparticles. Thus, Ag-reinforced HA/CNT can serve as potential antibacterial biocomposites.
Resumo:
Multi-walled carbon nanotube (MWCNT)-polyvinyl chloride (PVC) nanocomposites, with MWCNT loading up to 44.4 weight percent (wt%), were prepared by the solvent mixing and casting method. Electron microscopy indicates high degree of dispersion of MWCNT in PVC matrix, achieved by ultrasonication without using any surfactants. Thermogravimetric analysis showed a significant monotonic enhancement in the thermal stability of nanocomposites by increasing the wt% of MWCNT. Electrical conductivity of nanocomposites followed the classical percolation theory and the conductivity prominently improved from 10(-7) to 9 S/cm as the MWCNT loading increased from 0.1 to 44.4 wt%. Low value of electrical percolation threshold similar to 0.2 wt% is achieved which is attributed to high aspect ratio and homogeneous dispersion of MWCNT in PVC. The analysis of the low temperature electrical resistivity data shows that sample of 1.9 wt% follows three dimensional variable range hopping model whereas higher wt% nanocomposite samples follow power law behavior. The magnetization versus applied field data for both bulk MWCNTs and nanocomposite of 44.4 wt% display ferromagnetic behavior with enhanced coercivities of 1.82 and 1.27 kOe at 10 K, respectively. The enhancement in coercivity is due to strong dipolar interaction and shape anisotropy of rod-shaped iron nanoparticles. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate that etched fiber Bragg gratings (eFBGs) coated with single walled carbon nanotubes (SWNTs) and graphene oxide (GO) are highly sensitive and accurate biochemical sensors. Here, for detecting protein concanavalin A (Con A), mannose-functionalized poly(propyl ether imine) (PETIM) dendrimers (DMs) have been attached to the SWNTs (or GO) coated on the surface modified eFBG. The dendrimers act as multivalent ligands, having specificity to detect lectin Con A. The specificity of the sensor is shown by a much weaker response (factor of similar to 2500 for the SWNT and similar to 2000 for the GO coated eFBG) to detect non specific lectin peanut agglutinin. DM molecules functionalized GO coated eFBG sensors showed excellent specificity to Con A even in the presence of excess amount of an interfering protein bovine serum albumin. The shift in the Bragg wavelength (Delta lambda(B)) with respect to the lambda(B) values of SWNT (or GO)-DM coated eFBG for various concentrations of lectin follows Langmuir type adsorption isotherm, giving an affinity constant of similar to 4 x 10(7) M-1 for SWNTs coated eFBG and similar to 3 x 10(8) M-1 for the GO coated eFBG. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In well dispersed multi-wall carbon nanotube-polystyrene composite of 15 wt%, with room temperature conductivity of similar to 5 S/cm and resistivity ratio R-2K/R-200K] of similar to 1.4, the temperature dependence of conductivity follows a power-law behavior. The conductivity increases with magnetic field for a wide range of temperature (2-200 K), and power-law fits to conductivity data show that localization length (xi) increases with magnetic field, resulting in a large negative magnetoresistance (MR). At 50T, the negative MR at 8 K is similar to 13% and it shows a maximum at 90K (similar to 25%). This unusually large negative MR indicates that the field is delocalizing the charge carriers even at higher temperatures, apart from the smaller weak localization contribution at T < 20 K. This field-induced delocalization mechanism of MR can provide insight into the intra and inter tube transport. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We report a simple hydrothermal synthesis of highly reproducible carbon nanoparticles in a size range between 2 and 7 nmfroma single precursor sucrose without either surface passivating agents or acids and bases. The carbon nanoparticles can be used as white light phosphors, especially for ultraviolet light emitting diodes and metal-free catalyst for the reduction of nitrophenol.
Resumo:
Titanium carbide (TiC) is an electrically conducting refractory interstitial compound possessing several unique properties. A cost-effective, efficient and non-Pt electrocatalyst based on TiC is explored and the multi-functionality of TiC towards various electrochemical reactions that are of significant interest in low temperature fuel cells is studied. Ameliorated activities towards oxygen reduction reaction (ORR) and borohydride oxidation are observed with TiC-carbon composites. High sensitivity and selectivity towards ORR have been demonstrated with very good methanol tolerance. The charge transfer interactions between TiC and carbon seem to play a vital role in the improved activity as compared to their individual counterparts. The present study opens up a way to realize completely Pt-free borohydride fuel cell architecture.