953 resultados para C-flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface flow types (SFT) are advocated as ecologically relevant hydraulic units, often mapped visually from the bankside to characterise rapidly the physical habitat of rivers. SFT mapping is simple, non-invasive and cost-efficient. However, it is also qualitative, subjective and plagued by difficulties in recording accurately the spatial extent of SFT units. Quantitative validation of the underlying physical habitat parameters is often lacking, and does not consistently differentiate between SFTs. Here, we investigate explicitly the accuracy, reliability and statistical separability of traditionally mapped SFTs as indicators of physical habitat, using independent, hydraulic and topographic data collected during three surveys of a c. 50m reach of the River Arrow, Warwickshire, England. We also explore the potential of a novel remote sensing approach, comprising a small unmanned aerial system (sUAS) and Structure-from-Motion photogrammetry (SfM), as an alternative method of physical habitat characterisation. Our key findings indicate that SFT mapping accuracy is highly variable, with overall mapping accuracy not exceeding 74%. Results from analysis of similarity (ANOSIM) tests found that strong differences did not exist between all SFT pairs. This leads us to question the suitability of SFTs for characterising physical habitat for river science and management applications. In contrast, the sUAS-SfM approach provided high resolution, spatially continuous, spatially explicit, quantitative measurements of water depth and point cloud roughness at the microscale (spatial scales ≤1m). Such data are acquired rapidly, inexpensively, and provide new opportunities for examining the heterogeneity of physical habitat over a range of spatial and temporal scales. Whilst continued refinement of the sUAS-SfM approach is required, we propose that this method offers an opportunity to move away from broad, mesoscale classifications of physical habitat (spatial scales 10-100m), and towards continuous, quantitative measurements of the continuum of hydraulic and geomorphic conditions which actually exists at the microscale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General-purpose parallel processing for solving day-to-day industrial problems has been slow to develop, partly because of the lack of suitable hardware from well-established, mainstream computer manufacturers and suitably parallelized application software. The parallelization of a CFD-(computational fluid dynamics) flow solution code is known as ESAUNA. This code is part of SAUNA, a large CFD suite aimed at computing the flow around very complex aircraft configurations including complete aircraft. A novel feature of the SAUNA suite is that it is designed to use either block-structured hexahedral grids, unstructured tetrahedral grids, or a hybrid combination of both grid types. ESAUNA is designed to solve the Euler equations or the Navier-Stokes equations, the latter in conjunction with various turbulence models. Two fundamental parallelization concepts are used—namely, grid partitioning and encapsulation of communications. Grid partitioning is applied to both block-structured grid modules and unstructured grid modules. ESAUNA can also be coupled with other simulation codes for multidisciplinary computations such as flow simulations around an aircraft coupled with flutter prediction for transient flight simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. METHODS: Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). RESULTS: Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). CONCLUSIONS: Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the spirometry and respiratory static pressures in 17 young women, twice a week for three successive ovulatory menstrual cycles to determine if such variables changed across the menstrual, follicular, periovulatory, early-tomid luteal and late luteal phases. The factors phases of menstrual cycle and individual cycles had no significant effect on the spirometry variables except for peak expiratory flow (PEF) and respiratory static pressures. Significant weak positive correlations were found between the progesterone:estradiol ratio and PEF and between estrogen and tidal volume (r = 0.37), inspiratory time (r = 0.22), expiratory time (r = 0.19), maximal inspiratory pressure (r = 0.25) and maximal expiratory pressure (r = 0.20) and for progesterone and maximal inspiratory pressure (r = 0.32) during the early-to-mid luteal phase. Although most parameters of the spirometry results did not change during the menstrual cycle, the correlations observed between sexual hormones and respiratory control variables suggest a positive influence of sexual female hormones controlling the thoracic pump muscles in the luteal phase

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase change problems arise in many practical applications such as air-conditioning and refrigeration, thermal energy storage systems and thermal management of electronic devices. The physical phenomenon in such applications are complex and are often difficult to be studied in detail with the help of only experimental techniques. The efforts to improve computational techniques for analyzing two-phase flow problems with phase change are therefore gaining momentum. The development of numerical methods for multiphase flow has been motivated generally by the need to account more accurately for (a) large topological changes such as phase breakup and merging, (b) sharp representation of the interface and its discontinuous properties and (c) accurate and mass conserving motion of the interface. In addition to these considerations, numerical simulation of multiphase flow with phase change introduces additional challenges related to discontinuities in the velocity and the temperature fields. Moreover, the velocity field is no longer divergence free. For phase change problems, the focus of developmental efforts has thus been on numerically attaining a proper conservation of energy across the interface in addition to the accurate treatment of fluxes of mass and momentum conservation as well as the associated interface advection. Among the initial efforts related to the simulation of bubble growth in film boiling applications the work in \cite{Welch1995} was based on the interface tracking method using a moving unstructured mesh. That study considered moderate interfacial deformations. A similar problem was subsequently studied using moving, boundary fitted grids \cite{Son1997}, again for regimes of relatively small topological changes. A hybrid interface tracking method with a moving interface grid overlapping a static Eulerian grid was developed \cite{Juric1998} for the computation of a range of phase change problems including, three-dimensional film boiling \cite{esmaeeli2004computations}, multimode two-dimensional pool boiling \cite{Esmaeeli2004} and film boiling on horizontal cylinders \cite{Esmaeeli2004a}. The handling of interface merging and pinch off however remains a challenge with methods that explicitly track the interface. As large topological changes are crucial for phase change problems, attention has turned in recent years to front capturing methods utilizing implicit interfaces that are more effective in treating complex interface deformations. The VOF (Volume of Fluid) method was adopted in \cite{Welch2000} to simulate the one-dimensional Stefan problem and the two-dimensional film boiling problem. The approach employed a specific model for mass transfer across the interface involving a mass source term within cells containing the interface. This VOF based approach was further coupled with the level set method in \cite{Son1998}, employing a smeared-out Heaviside function to avoid the numerical instability related to the source term. The coupled level set, volume of fluid method and the diffused interface approach was used for film boiling with water and R134a at the near critical pressure condition \cite{Tomar2005}. The effect of superheat and saturation pressure on the frequency of bubble formation were analyzed with this approach. The work in \cite{Gibou2007} used the ghost fluid and the level set methods for phase change simulations. A similar approach was adopted in \cite{Son2008} to study various boiling problems including three-dimensional film boiling on a horizontal cylinder, nucleate boiling in microcavity \cite{lee2010numerical} and flow boiling in a finned microchannel \cite{lee2012direct}. The work in \cite{tanguy2007level} also used the ghost fluid method and proposed an improved algorithm based on enforcing continuity and divergence-free condition for the extended velocity field. The work in \cite{sato2013sharp} employed a multiphase model based on volume fraction with interface sharpening scheme and derived a phase change model based on local interface area and mass flux. Among the front capturing methods, sharp interface methods have been found to be particularly effective both for implementing sharp jumps and for resolving the interfacial velocity field. However, sharp velocity jumps render the solution susceptible to erroneous oscillations in pressure and also lead to spurious interface velocities. To implement phase change, the work in \cite{Hardt2008} employed point mass source terms derived from a physical basis for the evaporating mass flux. To avoid numerical instability, the authors smeared the mass source by solving a pseudo time-step diffusion equation. This measure however led to mass conservation issues due to non-symmetric integration over the distributed mass source region. The problem of spurious pressure oscillations related to point mass sources was also investigated by \cite{Schlottke2008}. Although their method is based on the VOF, the large pressure peaks associated with sharp mass source was observed to be similar to that for the interface tracking method. Such spurious fluctuation in pressure are essentially undesirable because the effect is globally transmitted in incompressible flow. Hence, the pressure field formation due to phase change need to be implemented with greater accuracy than is reported in current literature. The accuracy of interface advection in the presence of interfacial mass flux (mass flux conservation) has been discussed in \cite{tanguy2007level,tanguy2014benchmarks}. The authors found that the method of extending one phase velocity to entire domain suggested by Nguyen et al. in \cite{nguyen2001boundary} suffers from a lack of mass flux conservation when the density difference is high. To improve the solution, the authors impose a divergence-free condition for the extended velocity field by solving a constant coefficient Poisson equation. The approach has shown good results with enclosed bubble or droplet but is not general for more complex flow and requires additional solution of the linear system of equations. In current thesis, an improved approach that addresses both the numerical oscillation of pressure and the spurious interface velocity field is presented by featuring (i) continuous velocity and density fields within a thin interfacial region and (ii) temporal velocity correction steps to avoid unphysical pressure source term. Also I propose a general (iii) mass flux projection correction for improved mass flux conservation. The pressure and the temperature gradient jump condition are treated sharply. A series of one-dimensional and two-dimensional problems are solved to verify the performance of the new algorithm. Two-dimensional and cylindrical film boiling problems are also demonstrated and show good qualitative agreement with the experimental observations and heat transfer correlations. Finally, a study on Taylor bubble flow with heat transfer and phase change in a small vertical tube in axisymmetric coordinates is carried out using the new multiphase, phase change method.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Penetration of fractional flow reserve (FFR) in clinical practice varies extensively, and the applicability of results from randomized trials is understudied. We describe the extent to which the information gained from routine FFR affects patient management strategy and clinical outcome. METHODS AND RESULTS: Nonselected patients undergoing coronary angiography, in which at least 1 lesion was interrogated by FFR, were prospectively enrolled in a multicenter registry. FFR-driven change in management strategy (medical therapy, revascularization, or additional stress imaging) was assessed per-lesion and per-patient, and the agreement between final and initial strategies was recorded. Cardiovascular death, myocardial infarction, or unplanned revascularization (MACE) at 1 year was recorded. A total of 1293 lesions were evaluated in 918 patients (mean FFR, 0.81±0.1). Management plan changed in 406 patients (44.2%) and 584 lesions (45.2%). One-year MACE was 6.9%; patients in whom all lesions were deferred had a lower MACE rate (5.3%) than those with at least 1 lesion revascularized (7.3%) or left untreated despite FFR≤0.80 (13.6%; log-rank P=0.014). At the lesion level, deferral of those with an FFR≤0.80 was associated with a 3.1-fold increase in the hazard of cardiovascular death/myocardial infarction/target lesion revascularization (P=0.012). Independent predictors of target lesion revascularization in the deferred lesions were proximal location of the lesion, B2/C type and FFR. CONCLUSIONS: Routine FFR assessment of coronary lesions safely changes management strategy in almost half of the cases. Also, it accurately identifies patients and lesions with a low likelihood of events, in which revascularization can be safely deferred, as opposed to those at high risk when ischemic lesions are left untreated, thus confirming results from randomized trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"CM-1033."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis work deals with a mathematical description of flow in polymeric pipe and in a specific peristaltic pump. This study involves fluid-structure interaction analysis in presence of complex-turbulent flows treated in an arbitrary Lagrangian-Eulerian (ALE) framework. The flow simulations are performed in COMSOL 4.4, as 2D axial symmetric model, and ABAQUS 6.14.1, as 3D model with symmetric boundary conditions. In COMSOL, the fluid and structure problems are coupled by monolithic algorithm, while ABAQUS code links ABAQUS CFD and ABAQUS Standard solvers with single block-iterative partitioned algorithm. For the turbulent features of the flow, the fluid model in both codes is described by RNG k-ϵ. The structural model is described, on the basis of the pipe material, by Elastic models or Hyperelastic Neo-Hookean models with Rayleigh damping properties. In order to describe the pulsatile fluid flow after the pumping process, the available data are often defective for the fluid problem. Engineering measurements are normally able to provide average pressure or velocity at a cross-section. This problem has been analyzed by McDonald's and Womersley's work for average pressure at fixed cross section by Fourier analysis since '50, while nowadays sophisticated techniques including Finite Elements and Finite Volumes exist to study the flow. Finally, we set up peristaltic pipe simulations in ABAQUS code, by using the same model previously tested for the fl uid and the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and rapid flow-injection spectrophotometric method is reported for the determination of dipyrone in pharmaceutical formulations. The method is based on the reaction of dipyrone with ammonium molybdate in acidic medium to produce blue molybdenum, which was detected spectrophotometrically at 620 nm. The analyte was determined in a single-line flow system. The calibration curve obtained was linear in the range of 5x10(-4) to 8x10(-3) mol L-1 for dipyrone concentration and the precision ( s r =1.7%) was satisfactory. The method proved to be selective and adequately sensitive. Application of the method to the analysis of pharmaceutical samples resulted in excellent accuracy; the percent mean recoveries were in the range 95.3%-101% and relative errors less than 5.0% for five pharmaceutical formulations were found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many geological formations consist of crystalline rocks that have very low matrix permeability but allow flow through an interconnected network of fractures. Understanding the flow of groundwater through such rocks is important in considering disposal of radioactive waste in underground repositories. A specific area of interest is the conditioning of fracture transmissivities on measured values of pressure in these formations. This is the process where the values of fracture transmissivities in a model are adjusted to obtain a good fit of the calculated pressures to measured pressure values. While there are existing methods to condition transmissivity fields on transmissivity, pressure and flow measurements for a continuous porous medium there is little literature on conditioning fracture networks. Conditioning fracture transmissivities on pressure or flow values is a complex problem because the measurements are not linearly related to the fracture transmissivities and they are also dependent on all the fracture transmissivities in the network. We present a new method for conditioning fracture transmissivities on measured pressure values based on the calculation of certain basis vectors; each basis vector represents the change to the log transmissivity of the fractures in the network that results in a unit increase in the pressure at one measurement point whilst keeping the pressure at the remaining measurement points constant. The fracture transmissivities are updated by adding a linear combination of basis vectors and coefficients, where the coefficients are obtained by minimizing an error function. A mathematical summary of the method is given. This algorithm is implemented in the existing finite element code ConnectFlow developed and marketed by Serco Technical Services, which models groundwater flow in a fracture network. Results of the conditioning are shown for a number of simple test problems as well as for a realistic large scale test case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinterpretation of old heat flow data or use of new data and new techniques of detection of the temperature under the surface have conducted to new heat flow density values in some regions of the globe. The problem of ice melting in Greenland and Antarctica caught the public's attention to the importance of knowledge on heat flow values and thermal structure of the globe. In the last years, several models were presented trying to obtain lithosphere and Moho thickness of the Iberia Peninsula. The work we intend to present is related with the SW part of the Iberia Peninsula ( south of the Ossa Morena zone, South Portuguese Zone and Algarve). The results obtained show a decrease in the thickness of the crust and the lithosphere in this region. Density anomalies in the crust are also referred. I intend to make the connection between the results of these models and the heat flow thermal conductivity, heat production and geological data available for the region, trying to explain the results of heat flow density data obtained.