956 resultados para Buffalo Bill, 1846-1917.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of the present study were to estimate the population of the normal and degenerated preantral follicles of buffaloes in different reproductive phases and to classify the different types of degeneration of ovarian preantral follicles. For this, 18 ovaries were divided in three groups: prepubertal, non pregnat and pregnant adult females. The ovaries were collected from a slaughterhouse (Frigol - Brazil) and processed for classic histological examination. The follicular population was estimated according to Cahill et al. (1979) and calculated according to Gougeon & Chainy (1987). Young buffaloes, pregnant and non pregnat adults presented an average number of 15.5, 3.7 and 8.9 preantral follicles with normal morphology and type I (the degeneration was observed just in oocyte) and II (oocyte and granulosa cells were degenerated) degeneration, respectively. This experiment demonstrated that the proportions of primordial, primary and secondary follicles were affected by reproductive phase. A significant difference was observed considering the proportions of preantral follicles with normal morphology and Type I degeneration in all reproductive phases evaluated. The primary follicles presented more percentage of Type I degeneration that the others follicles and the primordial and primary follicles presented more percentage of Type II degeneration in three reproductive phases evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten type I loci from HSA 10 (IL2RA and VIM), HSA11 (HBB and FSHB) and HSA20 (THBD, AVP/OXT, GNAS1, HCK and TOP1) and two domestic cattle type II loci (CSSM30 and BL42) were FISH mapped to R-banded river buffalo (BBU) and sheep (OAR) chromosomes. IL2RA (HSA 10) maps on BBU 14q13 and OAR13q13, VIM (HSA 10) maps on BBU14q15 and OAR13q15, HBB (HSA11) maps on BBU16q25 and OAR15q23, FSHB (HSA11) maps on BBU16q28 and OAR15q26. THBD (HSA20) maps on BBU 14q15 and OAR13q15 while AVP/OXT. GNAS1, HCK, and TOP I (HSA20) as well as CSSM30 and BL42 map on the same large band of BBU 14q22 and OAR13q22. All loci were mapped on the same homologous chromosomes and chromosome bands of the two species, and these results agree with those earlier reported in cattle homologous chromosomes 15 and 13. respectively, confirming the high degree of both banding and physical map similarities among the bovid species. Indirect comparisons between physical maps achieved on bovid chromosomes and those reported on HSA10, HSA11 and HSA20 were performed. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A preliminary radiation hybrid (RH) map containing 50 loci on chromosome 7 of the domestic river buffalo Bubalus bubalis (BBU; 2n = 50) was constructed based on a comparative mapping approach. The RH map of BBU7 includes thirty-seven gene markers and thirteen microsatellites. All loci have been previously assigned to Bos taurus (BTA) chromosome BTA6, which is known for its association with several economically important milk production traits in cattle. The map consists of two linkage groups spanning a total length of 627.9 cR(5,000). Comparative analysis of the BBU7 RH 5,000 map with BTA6 in cattle gave new evidence for strong similarity between the two chromosomes over their entire length and exposed minor differences in locus order. Comparison of the BBU7 RH 5,000 map with the Homo sapiens (HSA) genome revealed similarity with a large chromosome segment of HSA4. Comparative analysis of loci in both species revealed more variability than previously known in gene order and several chromosome rearrangements including centromere relocation. The data obtained in our study define the evolutionarily conserved segment on BBU7 and HSA4 to be between 3.5 megabases (Mb) and 115.8 Mb in the HSA4 (genome build 36) DNA sequence. Copyright (c) 2008 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The largest chromosome in the river buffalo karyotype, BBU1, is a submetacentric chromosome with reported homology between BBU1q and bovine chromosome 1 and between BBU1p and BTA27. We present the first radiation hybrid map of this chromosome containing 69 cattle derived markers including 48 coding genes, 17 microsatellites and four ESTs distributed in two linkage groups spanning a total length of 1330.1 cR(5000). The RH map was constructed based on analysis of a recently developed river buffalo-hamster whole genome radiation hybrid (BBURH5000) panel. The retention frequency of individual markers across the panel ranged from 17.8 to 52.2%. With few exceptions, the order of markers within linkage groups is identical to the order established for corresponding cattle RH maps. The BBU1 map provides a starting point for comparison of gene order rearrangements between river buffalo chromosome 1 and its bovine homologs. Copyright (C) 2007 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extensive use of buffalo in agriculture, especially in developing countries, begs for genetic resources to evaluate and improve traits important to local and regional economies. Brazil presents the largest water buffalo populations in the New World, with 1 1 million heads including swamp and river types. To design rational breeding strategies for optimum utilization and conservation of available genetic variability in the Brazilian buffalo's population, it is essential to understand their genetic architecture and relationship among various breeds. This depends, in part, on the knowledge of their genetic structure based on molecular markers like microsatellites. In the present study, we developed six enriched partial genomic libraries for river buffalo using selective hybridization methods. Genomic DNA was hybridized with six different arrays of repeat motif, 5' biotinylated - (CA)(15), (CT)(15), (AGG)(8), (GAAA)(8), (GATA)(8), (AAAAC)(8) - and bound to streptavidin coated beads. The cloning process generated a total of 1920 recombinant clones. Up to date, 487 were directly sequenced for the presence of repeats, from which 13 have been positive for presence of repeats as follows: 9 for di-nucleotide repeats, 3 for tri-nucleotide repeats and 1 for tetra-nucleotide repeat. PCR primer pairs for the isolated microsatellites are under construction to determine optimum annealing temperature. These microsatellites will be useful for studies involving phylogenetic relationships, genome mapping and genetic diversity analysis within buffalo populations worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first radiation hybrid map of the river buffalo X chromosome generated from a recently constructed river buffalo (Bubalus bubalis) whole-genome radiation hybrid panel (BBURH5000). This map contains a total of 33 cattle-derived markers, including 10 genes, four ESTs and 19 microsatellites. The markers are distributed in two linkage groups: LG1 contains eight markers spanning 125.6 cR, and LG2 contains 25 markers spanning 366.3 cR. LG1 contains six markers in common with bovine sequence assembly BUILD 3.1. With the exception of BMS2152, the order of these markers on our BBUX map is shuffled when compared to the cow X chromosome (Bos taurus; BTAX). From LG2, two markers (AMELX and BL22) map to a more distal portion of BTAX compared to BBUX. In addition, two pairs of LG2 markers exhibit inversions compared to BTAX (ILSTS017 and ATRX; XBM38 and PPEF1). Alternatively, when compared to the most recent bovine RH map (Bov-Gen 3000rads), BL1098 and BMS2227 from LG1 as well as PLS3 and BMS1820 from LG2 showed inverted positions on the BBUX map. These discrepancies in buffalo and cattle maps may reflect evolutionary divergence of the chromosomes or mapping errors in one of the two species. Although the set of mapped markers does not cover the entire X chromosome, this map is a starting point for the construction of a high-resolution map, which is necessary for characterization of small rearrangements that might have occurred between the Bubalus bubalis and Bos taurus X chromosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water buffalo is vital to the lives of small farmers and to the economy of many countries worldwide. Not only are they draught animals, but they are also a source of meat, horns, skin and particularly the rich and precious milk that may be converted to creams, butter, yogurt and many cheeses. Genome analysis of water buffalo has advanced significantly in recent years. This review focuses on currently available genome resources in water buffalo in terms of cytogenetic characterization, whole genome mapping and next generation sequencing. No doubt, these resources indicate that genome science comes of age in the species and will provide knowledge and technologies to help optimize production potential, reproduction efficiency, product quality, nutritional value and resistance to diseases. As water buffalo and domestic cattle, both members of the Bovidae family, are closely related, the vast amount of cattle genetic/genomic resources might serve as shortcuts for the buffalo community to further advance genome science and biotechnologies in the species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major histocompatibility complex (MHC) contains a set of genes necessary for antigen presentation in the immune system. This gene dense and polymorphic region of the mammalian genome is of considerable interest due to the role of MHC genes in immune function and animal health. Previous cytogenetic studies have indicated that the MHC in river buffalo resides on the short arm of chromosome 2 (BBU2). A 5000-rad radiation hybrid mapping panel was recently generated to enable construction of a whole genome map of river buffalo. To this and, the aims of this project were to elucidate the general organization of the MHC on BBU2, and to compare gene order within this region to the MHC in cattle. PCR primers were selected from the bovine gene map and used with the BBURH(5000) panel to map a set of ten MHC class 11 genes in river buffalo. Analysis indicates that these genes fall into two linkage groups, consistent with organization of the MHC in cattle. This comparison of buffalo and bovine MHC gene order provides the first insight into the organization of the MHC on river buffalo chromosome 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)