913 resultados para Brusewitz, Gunnar
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Peer reviewed
Resumo:
Non peer reviewed
Resumo:
The presence of high phase noise in addition to additive white Gaussian noise in coherent optical systems affects the performance of forward error correction (FEC) schemes. In this paper, we propose a simple scheme for such systems, using block interleavers and binary Bose–Chaudhuri–Hocquenghem (BCH) codes. The block interleavers are specifically optimized for differential quadrature phase shift keying modulation. We propose a method for selecting BCH codes that, together with the interleavers, achieve a target post-FEC bit error rate (BER). This combination of interleavers and BCH codes has very low implementation complexity. In addition, our approach is straightforward, requiring only short pre-FEC simulations to parameterize a model, based on which we select codes analytically. We aim to correct a pre-FEC BER of around (Formula presented.). We evaluate the accuracy of our approach using numerical simulations. For a target post-FEC BER of (Formula presented.), codes selected using our method result in BERs around 3(Formula presented.) target and achieve the target with around 0.2 dB extra signal-to-noise ratio.
Resumo:
We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.
Resumo:
A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. This study explores such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. The surface water samples were taken at Helgoland Island about 40 km offshore in the southeastern North Sea in the German Bight at the station 'Kabeltonne' (54° 11.3' N, 7° 54.0' E) between the main island and the minor island, Düne (German for 'dune') using small research vessels (http://www.awi.de/en/expedition/ships/more-ships.html). Water depths at this site fluctuate from 6 to 10 m over the tidal cycle. Samples were processed as described previously (Teeling et al., 2012; doi:10.7554/eLife.11888.001) in the laboratory of the Biological Station Helgoland within less than two hours after sampling. Assessment of absolute cell numbers and bacterioplankton community composition was carried out as described previously (Thiele et al., 2011; doi:10.1016/B978-0-444-53199-5.00056-7). To obtain total cell numbers, DNA of formaldehyde fixed cells filtered on 0.2 mm pore sized filters was stained with 4',6-diamidino-2-phenylindole (DAPI). Fluorescently labeled cells were subsequently counted on filter sections using an epifluores-cence microscope. Likewise, bacterioplankton community composition was assessed by catalyzedreporter deposition fluorescence in situ hybridization (CARD-FISH) of formaldehyde fixed cells on 0.2 mm pore sized filters.
Resumo:
Cadwaladerite (Al(OH)2Cl∙4H2O) collected from Cerro Pintados, Chile described by Gordon in 1941 is designated as “doubtful” by the IMA. Material collected from the same locality in 2015 resembling the description of cadwaladerite gave a powder XRD pattern similar to lesukite (Al2(OH)5Cl∙2H2O). However, Gordon provided no X-ray data for his material from Cerro Pintados. In order to determine whether cadwaladerite and lesukite are the same mineral species, measurements were made on a suite of samples from various localities. A portion of the material collected by Gordon in 1941 was also obtained from the Mineralogical Museum of Harvard University. Type material of lesukite from a fumarolic environment at the Tolbachik Fissure in Kamchatka, Russia was obtained as well as lesukite from the Maria Mine, Chile (Arica Province) and a previously undescribed locality for lesukite (Barranaca del Sulfato, Mejillones Peninsula, Antofagasta Province). All samples are yellow to yellow-orange in colour and all exhibit small cubic crystals (up to 50µm), even Gordon’s cadwaladerite which was thought to be amorphous. The Chilean samples are all associated with halite and sometimes with anhydrite. These five samples were studied by SEM, FTIR, powder XRD, and Raman spectroscopy. A ratio of Al:Cl less than or equal to 1.3:1 was observed for all the samples, including measurements made on lesukite from the Russian locality Vergasova et al. studied in 1997, and determined to have a 2:1 ratio. SEM-EDS analyses also show all samples to have minor iron substitution, as well as copper substitution in two samples. FTIR spectra are very similar for all samples. Raman spectroscopy done on both samples collected in Cerro Pintados and the Russian lesukite gave similar spectra. Powder XRD analyses on all samples showed spectra identified to be lesukite, including Gordon’s cadwaladerite. Crystal cell parameters calculated from powder XRD ranged from 19.778Å to 19.878Å. Results using modern instrumental techniques confirm Gordon’s cadwaladerite, collected in 1939 and described in 1941, and lesukite are the same mineral species.