939 resultados para Brane Dynamics in Gauge Theories


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical analysis of the three currently popular microscopic theories of solvation dynamics, namely, the dynamic mean spherical approximation (DMSA), the molecular hydrodynamic theory (MHT), and the memory function theory (MFT) is carried out. It is shown that in the underdamped limit of momentum relaxation, all three theories lead to nearly identical results when the translational motions of both the solute ion and the solvent molecules are neglected. In this limit, the theoretical prediction is in almost perfect agreement with the computer simulation results of solvation dynamics in the model Stockmayer liquid. However, the situation changes significantly in the presence of the translational motion of the solvent molecules. In this case, DMSA breaks down but the other two theories correctly predict the acceleration of solvation in agreement with the simulation results. We find that the translational motion of a light solute ion can play an important role in its own solvation. None of the existing theories describe this aspect. A generalization of the extended hydrodynamic theory is presented which, for the first time, includes the contribution of solute motion towards its own solvation dynamics. The extended theory gives excellent agreement with the simulations where solute motion is allowed. It is further shown that in the absence of translation, the memory function theory of Fried and Mukamel can be recovered from the hydrodynamic equations if the wave vector dependent dissipative kernel in the hydrodynamic description is replaced by its long wavelength value. We suggest a convenient memory kernel which is superior to the limiting forms used in earlier descriptions. We also present an alternate, quite general, statistical mechanical expression for the time dependent solvation energy of an ion. This expression has remarkable similarity with that for the translational dielectric friction on a moving ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past decades since Schumpeter’s influential writings economists have pursued research to examine the role of innovation in certain industries on firm as well as on industry level. Researchers describe innovations as the main trigger of industry dynamics, while policy makers argue that research and education are directly linked to economic growth and welfare. Thus, research and education are an important objective of public policy. Firms and public research are regarded as the main actors which are relevant for the creation of new knowledge. This knowledge is finally brought to the market through innovations. What is more, policy makers support innovations. Both actors, i.e. policy makers and researchers, agree that innovation plays a central role but researchers still neglect the role that public policy plays in the field of industrial dynamics. Therefore, the main objective of this work is to learn more about the interdependencies of innovation, policy and public research in industrial dynamics. The overarching research question of this dissertation asks whether it is possible to analyze patterns of industry evolution – from evolution to co-evolution – based on empirical studies of the role of innovation, policy and public research in industrial dynamics. This work starts with a hypothesis-based investigation of traditional approaches of industrial dynamics. Namely, the testing of a basic assumption of the core models of industrial dynamics and the analysis of the evolutionary patterns – though with an industry which is driven by public policy as example. Subsequently it moves to a more explorative approach, investigating co-evolutionary processes. The underlying questions of the research include the following: Do large firms have an advantage because of their size which is attributable to cost spreading? Do firms that plan to grow have more innovations? What role does public policy play for the evolutionary patterns of an industry? Are the same evolutionary patterns observable as those described in the ILC theories? And is it possible to observe regional co-evolutionary processes of science, innovation and industry evolution? Based on two different empirical contexts – namely the laser and the photovoltaic industry – this dissertation tries to answer these questions and combines an evolutionary approach with a co-evolutionary approach. The first chapter starts with an introduction of the topic and the fields this dissertation is based on. The second chapter provides a new test of the Cohen and Klepper (1996) model of cost spreading, which explains the relationship between innovation, firm size and R&D, at the example of the photovoltaic industry in Germany. First, it is analyzed whether the cost spreading mechanism serves as an explanation for size advantages in this industry. This is related to the assumption that the incentives to invest in R&D increase with the ex-ante output. Furthermore, it is investigated whether firms that plan to grow will have more innovative activities. The results indicate that cost spreading serves as an explanation for size advantages in this industry and, furthermore, growth plans lead to higher amount of innovative activities. What is more, the role public policy plays for industry evolution is not finally analyzed in the field of industrial dynamics. In the case of Germany, the introduction of demand inducing policy instruments stimulated market and industry growth. While this policy immediately accelerated market volume, the effect on industry evolution is more ambiguous. Thus, chapter three analyzes this relationship by considering a model of industry evolution, where demand-inducing policies will be discussed as a possible trigger of development. The findings suggest that these instruments can take the same effect as a technical advance to foster the growth of an industry and its shakeout. The fourth chapter explores the regional co-evolution of firm population size, private-sector patenting and public research in the empirical context of German laser research and manufacturing over more than 40 years from the emergence of the industry to the mid-2000s. The qualitative as well as quantitative evidence is suggestive of a co-evolutionary process of mutual interdependence rather than a unidirectional effect of public research on private-sector activities. Chapter five concludes with a summary, the contribution of this work as well as the implications and an outlook of further possible research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the first half of a two-part paper which deals with the social theoretic assumptions underlying system dynamics. The motivation is that clarification in this area can help mainstream social scientists to understand how our field relates to their literature, methods and concerns. Part I has two main sections. The aim of the first is to answer the question: How do the ideas of system dynamics relate to traditional social theories? The theoretic assumptions of the field are seldom explicit but rather are implicit in its practice. The range of system dynamics practice is therefore considered and related to a framework - widely used in both operational research (OR) and systems science - that organises the assumptions behind traditional social theoretic paradigms. Distinct and surprisingly varied groupings of practice are identified, making it difficult to place system dynamics in any one paradigm with any certainty. The difficulties of establishing a social theoretic home for system dynamics are exemplified in the second main section. This is done by considering the question: Is system dynamics deterministic? An analysis shows that attempts to relate system dynamics to strict notions of voluntarism or determinism quickly indicate that the field does not fit with either pole of this dichotomous, and strictly paradigmatic, view. Part I therefore concludes that definitively placing system dynamics with respect to traditional social theories is highly problematic. The scene is therefore set for Part II of the paper, which proposes an innovative and potentially fruitful resolution to this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of an interpolating master action does not guarantee the same spectrum for the interpolated dual theories. In the specific case of a generalized self-dual (GSD) model defined as the addition of the Maxwell term to the self-dual model in D = 2 + 1, previous master actions have furnished a dual gauge theory which is either nonlocal or contains a ghost mode. Here we show that by reducing the Maxwell term to first order by means of an auxiliary field we are able to define a master action which interpolates between the GSD model and a couple of non-interacting Maxwell-Chern-Simons theories of opposite helicities. The presence of an auxiliary field explains the doubling of fields in the dual gauge theory. A generalized duality transformation is defined and both models can be interpreted as self-dual models. Furthermore, it is shown how to obtain the gauge invariant correlators of the non-interacting MCS theories from the correlators of the self-dual field in the GSD model and vice-versa. The derivation of the non-interacting MCS theories from the GSD model, as presented here, works in the opposite direction of the soldering approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we rederive the Lamb-Retherford energy shift for an atomic electron in the presence of a thermal radiation. Using the Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism, where physical observables are expressed as convolutions of suitable statistical functions, we construct the electromagnetic field propagator of thermo field dynamics in the Coulomb gauge in order to investigate finite temperature effects on the atomic energy levels. In the same context, we also analyze the problem of the ground state stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present a possible way to relate the method of covariantizing the gauge-dependent pole and the negative dimensional integration method for computing Feynman integrals pertinent to the light-cone gauge fields. Both techniques are applicable to the algebraic light-cone gauge and dispense with prescriptions to treat the characteristic poles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the charges and fluxes that can occur in higher-order Abelian gauge theories defined on compact space-time manifolds with boundary. The boundary is necessary to supply a destination to the electric lines of force emanating from brane sources, thus allowing non-zero net electric charges, but it also introduces new types of electric and magnetic flux. The resulting structure of currents, charges, and fluxes is studied and expressed in the language of relative homology and de Rham cohomology and the corresponding abelian groups. These can be organised in terms of a pair of exact sequences related by the Poincare-Lefschetz isomorphism and by a weaker flip symmetry exchanging the ends of the sequences. It is shown how all this structure is brought into play by the imposition of the appropriately generalised Maxwell's equations. The requirement that these equations be integrable restricts the world-volume of a permitted brane (assumed closed) to be homologous to a cycle on the boundary of space-time. All electric charges and magnetic fluxes are quantised and satisfy the Dirac quantisation condition. But through some boundary cycles there may be unquantised electric fluxes associated with quantised magnetic fluxes and so dyonic in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach. © SISSA 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study phenomenological scaling theories of the polymer dynamics in random media, employing the existing scaling theories of polymer chains and the percolation statistics. We investigate both the Rouse and the Zimm model for Brownian dynamics and estimate the diffusion constant of the center-of-mass of the chain in such disordered media. For internal dynamics of the chain, we estimate the dynamic exponents. We propose similar scaling theory for the reptation dynamics of the chain in the framework of Flory theory for the disordered medium. The modifications in the case of correlated disorders are also discussed. .