897 resultados para Blood flow and vascular resistance
Resumo:
1 Natural soil profiles may be interpreted as an arrangement of parts which are characterized by properties like hydraulic conductivity and water retention function. These parts form a complicated structure. Characterizing the soil structure is fundamental in subsurface hydrology because it has a crucial influence on flow and transport and defines the patterns of many ecological processes. We applied an image analysis method for recognition and classification of visual soil attributes in order to model flow and transport through a man-made soil profile. Modeled and measured saturation-dependent effective parameters were compared. We found that characterizing and describing conductivity patterns in soils with sharp conductivity contrasts is feasible. Differently, solving flow and transport on the basis of these conductivity maps is difficult and, in general, requires special care for representation of small-scale processes.
Resumo:
Field soils show rather different spreading behavior at different water saturations, frequently caused by layering of the soil material. We performed tracer experiments in a laboratory sand tank. Such experiments complement and help comprehension of field investigations. We estimated, by image analysis, the first two moments of small plumes traveling through a two-dimensional, heterogeneous medium with strongly anisotropic correlation structure. Three steady state regimes were analyzed. Two main conclusions were drawn. First, low saturation led to very large heterogeneity and to strong preferential flow. Thus the description of the flow paths and the prediction of the solute arrival times require, in this case, more accurate knowledge about the topological structure. Second, saturation-dependent macroscopic anisotropy is an essential element of transport in unsaturated media. For this reason, small structural soil features should be properly upscaled to give appropriate effective soil parameters to be input in transport models.
Resumo:
The Greenland NEEM (North Greenland Eemian Ice Drilling) operation in 2010 provided the first opportunity to combine trace-gas measurements by laser spectroscopic instruments and continuous-flow analysis along a freshly drilled ice core in a field-based setting. We present the resulting atmospheric methane (CH4) record covering the time period from 107.7 to 9.5 ka b2k (thousand years before 2000 AD). Companion discrete CH4 measurements are required to transfer the laser spectroscopic data from a relative to an absolute scale. However, even on a relative scale, the high-resolution CH4 data set significantly improves our knowledge of past atmospheric methane concentration changes. New significant sub-millennial-scale features appear during interstadials and stadials, generally associated with similar changes in water isotopic ratios of the ice, a proxy for local temperature. In addition to the midpoint of Dansgaard–Oeschger (D/O) CH4 transitions usually used for cross-dating, sharp definition of the start and end of these events brings precise depth markers (with ±20 cm uncertainty) for further cross-dating with other palaeo- or ice core records, e.g. speleothems. The method also provides an estimate of CH4 rates of change. The onsets of D/O events in the methane signal show a more rapid rate of change than their endings. The rate of CH4 increase associated with the onsets of D/O events progressively declines from 1.7 to 0.6 ppbv yr−1 in the course of marine isotope stage 3. The largest observed rate of increase takes place at the onset of D/O event #21 and reaches 2.5 ppbv yr−1.
Resumo:
BACKGROUND: The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. METHODS: Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994, we determined the multilocus sequence type; the presence of 16 putative virulence genes (hyl(Efm), esp(Efm), and fms genes); resistance to ampicillin (AMP) and vancomycin (VAN); and high-level resistance to gentamicin and streptomycin. RESULTS: Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the United States. The earliest CC17 isolates were part of an outbreak that occurred in 1982 in Richmond, Virginia. The characteristics of CC17 isolates included increases in resistance to AMP, the presence of hyl(Efm) and esp(Efm), emergence of resistance to VAN, and the presence of at least 13 of 14 fms genes. Eight of 41 of the early isolates with resistance to AMP, however, were not in CC17. CONCLUSIONS: Although not all early US AMP isolates were clonally related, E. faecium CC17 isolates have been circulating in the United States since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment.
Resumo:
Vertebrates produce at least seven distinct beta-tubulin isotypes that coassemble into all cellular microtubules. The functional differences among these tubulin isoforms are largely unknown, but recent studies indicate that tubulin composition can affect microtubule properties and cellular microtubule-dependent behavior. One of the isotypes whose incorporation causes the largest change in microtubule assembly is beta5-tubulin. Overexpression of this isotype can almost completely destroy the microtubule network, yet it appears to be required in smaller amounts for normal mitotic progression. Moderate levels of overexpression can also confer paclitaxel resistance. Experiments using chimeric constructs and site-directed mutagenesis now indicate that the hypervariable C-terminal region of beta5 plays no role in these phenotypes. Instead, we demonstrate that two residues found in beta5 (Ser-239 and Ser-365) are each sufficient to inhibit microtubule assembly and confer paclitaxel resistance when introduced into beta1-tubulin; yet the single mutation of residue Ser-239 in beta5 eliminates its ability to confer these phenotypes. Despite the high degree of conservation among beta-tubulin isotypes, mutations affecting residue 365 demonstrate that amino acid substitutions can be context sensitive; i.e. an amino acid change in one isotype will not necessarily produce the same phenotype when introduced into a different isotype. Modeling studies indicate that residue Cys-239 of beta1-tubulin is close to a highly conserved Cys-354 residue suggesting the possibility that disulfide formation could play a significant role in the stability of microtubules formed with beta1- but not with beta5-tubulin.
Resumo:
Objective: To determine the prevalence of and the relationships between the degree and source of hyperandrogenemia, ovulatory patterns and cardiovascular disease risk indicators (blood pressure, indices or amount of obesity and fat distribution) in women with menstrual irregularities seen at endocrinologists' clinic. Design: A cross-sectional study design. Participants: A sample of 159 women with menstrual irregularities, aged 15-44, seen at endocrinologists' clinic. Main Outcome Measures: androgen levels, body mass index (BMI), waist-hip ratio (WHR), systolic and diastolic blood pressure (SBP & DBP), source of androgens, ovulatory activity. Results: The prevalence of hyperandrogenemia was 54.7% in this study sample. As expected, women with acne or hirsutism had an odds ratio 12.5 (95%CI = 5.2-25.5) times and 36 (95%CI = 12.9-99.5) times more likely to have hyperandrogenemia than those without acne or hirsutism. The main findings of this study were the following: Hyperandrogenemic women were more likely to have oligomenorrheic cycles (OR = 3.8, 95%CI = 1.5-9.9), anovulatory cycles (OR = 6.6, 95%CI = 2.8-15.4), general obesity (BMI $\ge$ 27) (OR = 6.8, 95%CI = 2.2-27.2) and central obesity (WHR $\ge$ 127) (OR = 14.5, 95%CI = 6.1-38.7) than euandrogenemic women. Hyperandrogenemic women with non-suppressible androgens had a higher mean BMI (29.3 $\pm$ 8.9) than those with suppressible androgens (27.9 $\pm$ 7.9); the converse was true for abdominal adiposity (WHR). Hyperandrogenemic women had a 2.4 odds ratio (95%CI = 1.0-6.2) for an elevated SBP and a 2.7 odds ratio (95%CI = 0.8-8.8) for elevated DBP. When age differences were accounted for, this relationship was strengthened and further strengthened when sources of androgens were controlled. When the differences in BMI were controlled, the odds ratio for elevated SBP in hyperandrogenemic women increased to 8.8 (95%CI = 1.1-69.9). When the age, the source of androgens, the amount of obesity and the type of obesity were controlled, hyperandrogenemic women had 13.5 (95%CI = 1.1-158.9) odds ratio for elevated SBP. Conclusions: In this study population, the presence of menstrual irregularities are highly predictive for the presence of elevated androgens. Women with elevated androgens have a high risk for obesity, more specifically for central obesity. The androgenemic status is an independent predictor of blood pressure elevation. It is probable that in the general population, the presence of menstrual irregularities are predictive of hyperandrogenemia. There is a great need for a population study of the prevalence of hyperandrogenemia and for longitudinal studies in hyperandrogenemic women (adrenarche to menopause) to investigate the evolution of these relationships. ^
Resumo:
BACKGROUND Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. METHODS A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. RESULTS In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. CONCLUSION The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection.
Resumo:
Ore-forming and geoenviromental systems commonly involve coupled fluid flowand chemical reaction processes. The advanced numerical methods and computational modeling have become indispensable tools for simulating such processes in recent years. This enables many hitherto unsolvable geoscience problems to be addressed using numerical methods and computational modeling approaches. For example, computational modeling has been successfully used to solve ore-forming and mine site contamination/remediation problems, in which fluid flow and geochemical processes play important roles in the controlling dynamic mechanisms. The main purpose of this paper is to present a generalized overview of: (1) the various classes and models associated with fluid flow/chemically reacting systems in order to highlight possible opportunities and developments for the future; (2) some more general issues that need attention in the development of computational models and codes for simulating ore-forming and geoenviromental systems; (3) the related progresses achieved on the geochemical modeling over the past 50 years or so; (4) the general methodology for modeling of oreforming and geoenvironmental systems; and (5) the future development directions associated with modeling of ore-forming and geoenviromental systems.
Resumo:
Diffusely infiltrating gliomas are among the most prognostically discouraging neoplasia in human. Temozolomide (TMZ) in combination with radiotherapy is currently used for the treatment of glioblastoma (GBM) patients, but less than half of the patients respond to therapy and chemoresistance develops rapidly. Epigenetic silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) has been associated with longer survival in GBM patients treated with TMZ, but nuclear factor κB (NF-κB)-mediated survival signaling and TP53 mutations contribute significantly to TMZ resistance. Enhanced NF-κB is in part owing to downregulation of negative regulators of NF-κB activity, including Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and NF-κB inhibitor interacting RAS-like 2 (NKIRAS2). Here we provide a novel mechanism independent of TP53 and MGMT by which oncogenic miR-125b confers TMZ resistance by targeting TNFAIP3 and NKIRAS2. GBM cells overexpressing miR-125b showed increased NF-κB activity and upregulation of anti-apoptotic and cell cycle genes. This was significantly associated with resistance of GBM cells to TNFα- and TNF-related inducing ligand-induced apoptosis as well as resistance to TMZ. Conversely, overexpression of anti-miR-125b resulted in cell cycle arrest, increased apoptosis and increased sensitivity to TMZ, indicating that endogenous miR-125b is sufficient to control these processes. GBM cells overexpressing TNFAIP3 and NKIRAS2 were refractory to miR-125b-induced apoptosis resistance as well as TMZ resistance, indicating that both genes are relevant targets of miR-125b. In GBM tissues, high miR-125b expression was significantly correlated with nuclear NF-κB confirming that miR-125b is implicated in NF-κB signaling. Most remarkably, miR-125b overexpression was clearly associated with shorter overall survival of patients treated with TMZ, suggesting that this microRNA is an important predictor of response to therapy.