965 resultados para Blinder-Oaxaca decomposition


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the specific heat transfer coefficient (UA) and the volumetric mass transfer coefficient (kLa) play an important role for the design of biotechnological processes, different techniques were developed in the past for the determination of these parameters. However, these approaches often use imprecise dynamic methods for the description of stationary processes and are limited towards scale and geometry of the bioreactor. Therefore, the aim of this thesis was to develop a new method, which overcomes these restrictions. This new approach is based on a permanent production of heat and oxygen by the constant decomposition of hydrogen peroxide in continuous mode. Since the degradation of H2O2 at standard conditions only takes place by the support of a catalyst, different candidates were investigated for their potential (regarding safety issues and reaction kinetic). Manganese-(IV)-oxide was found to be suitable. To compensate the inactivation of MnO2, a continuous process with repeated feeds of fresh MnO2 was established. Subsequently, a scale-up was successfully carried out from 100 mL to a 5 litre glass bioreactor (UniVessel®)To show the applicability of this new method for the characterisation of bioreactors, it was compared with common approaches. With the newly established technique as well as with a conventional procedure, which is based on an electrical heat source, specific heat transfer coefficients were measured in the range of 17.1 – 24.8 W/K for power inputs of about 50 – 70 W/L. However, a first proof of concept regarding the mass transfer showed no constant kLa for different dilution rates up to 0.04 h-1.Based on this, consecutive studies concerning the mass transfer should be made with higher volume flows, due to more even inflow rates. In addition, further experiments are advisable, to analyse the heat transfer in single-use bioreactors and in larger common systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sterile castes of Ibitermes inflatus sp. nov. from Rio Tinto, State of Paraíba, Brazil are described and illustrated. This is the first record of a species of Ibitermes from the Brazilian northeast and from the Atlantic Forest biome. The absence of ridges in the molar plate of the left mandible and the presence of granules of sand and silt mixed with organic matter in advanced stage of decomposition in the digestive tube of workers suggest that the species is a typical humus feeding termite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

São descritos e ilustrados os seguintes novos táxons - em Oemini, Methioidina: Kalore gen. nov., espécie-tipo K. asanga sp. nov.; em Methiini: Tessaropa boliviana sp. nov.; em Smodicini: Marupiara gen. nov., espécie-tipo M. castanea sp. nov.; em Ectenessini: Cotynessa gen. nov., espécie-tipo C. abatinga sp. nov.; em Phlyctaenodini: Ancylodonta apipema sp. nov.; em Neocorini: Marauna gen. nov., espécie-tipo M. punctatissima sp. nov., em Oxycoleini: Oxycoleus flavipes sp. nov., todos da Bolívia, Santa Cruz; Coscinedes oaxaca sp. nov. do México, Oaxaca; em Elaphidionini: Curtomerus piraiuba sp. nov. da Colômbia, Boyacá.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf litter represents a food source to many organisms that may directly contribute to organic matter decomposition. In addition, the physical presence of these vegetal detritus contributes for the modification of some environmental areas and produce microhabitats that may act as a refuge against predators and desiccation for many animals. The pulmonate gastropod Melampus coffeus (Linnaeus, 1758) (Ellobiidae) is a very common specie in Atlantic Coast mangrove forests and feeds on fallen mangrove leaves. It was hypothesized that the spatial distribution of Melampus coffeus is directly affected by mangrove leaf litter biomass deposition. Thus, this research aimed at evaluating the spatial distribution of these gastropods in relation to the biomass of mangrove leaf litter through a twelve-month period. The study area was established in the middle estuary of Pacoti River, state of Ceará, Brazil where two adjacent zones with different topographic profiles were determined. Samples of Melampus coffeus and leaf litter were collected monthly, throughout a year, from the mangrove ground surface. The results indicated that the presence of twigs in mangrove litter favor the occupation by smaller individuals of M. coffeus, probably because smaller individuals are more susceptible to predator attacks and desiccation than larger ones, and twigs and branches may provide a safe microhabitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 - Anaerobic bacteria of the Clostridium genus acidify mineral media without when agar is added. 2 - Acidulation results from the attack on the agar as a source of carbon. 3 - The quantity of CO² produced by the decomposition of the agar is approximately that obtained with soil bacteria as shown by Waksmann and Diehm working with hemicelluloses. Although galactone is less atacked than the other hemicelluloses the acidity produced is sufficient to disturb the fermentation tests in semi-solid media with agar. 4 - The acidulation of Spray's sugar-free control medium is probably due to the decomposition of the agar by anaerobes. The acidity produced may interfere with the acidity of the fermentation of the sugar in Spray's test or may be added to it, thus giving a false indication of the real acidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last 20 years have seen a significant evolution in the literature on horizontal inequity (HI) and have generated two major and "rival" methodological strands, namely, classical HI and reranking. We propose in this paper a class of ethically flexible tools that integrate these two strands. This is achieved using a measure of inequality that merges the well-known Gini coefficient and Atkinson indices, and that allows a decomposition of the total redistributive effect of taxes and transfers in a vertical equity effect and a loss of redistribution due to either classical HI or reranking. An inequality-change approach and a money-metric cost-of-inequality approach are developed. The latter approach makes aggregate classical HI decomposable across groups. As in recent work, equals are identified through a nonparametric estimation of the joint density of gross and net incomes. An illustration using Canadian data from 1981 to 1994 shows a substantial, and increasing, robust erosion of redistribution attributable both to classical HI and to reranking, but does not reveal which of reranking or classical HI is more important since this requires a judgement that is fundamentally normative in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Income distribution in Spain has experienced a substantial improvement towards equalisation during the second half of the seventies and the eighties; a period during which most OECD countries experienced the opposite trend. In spite of the many recent papers on the Spanish income distribution, the period covered by those stops in 1990. The aim of this paper is to extent the analysis to 1996 employing the same methodology and the same data set (ECPF). Our results not only corroborate the (decreasing inequality) trend found by others during the second half of the eighties, but also suggest that this trend extends over the first half of the nineties. We also show that our main conclusions are robust to changes in the equivalence scale, to changes in the definition of income and to potential data contamination. Finally, we analyse some of the causes which may be driving the overall picture of income inequality using two decomposition techniques. From this analyses three variables emerge as the major responsible factors for the observed improvement in the income distribution: education, household composition and socioeconomic situation of the household head.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The VAT is the most revenue tax in the Spanish economy in the year 2000. The aim of this research is to develop an analysis dissintegrated of the distributional effect of the current VAT in Spain, that is to say, this paper assesses the capacity of redistribution of the tax treatment of each expenditure category. It proposes different approaches for the analysis of the redistributive impact differential of each expenditure concept, and it desires to advocate the method of total decomposition of isolated contribution to the global distributional effect of the VAT. In this sense, this study shows the possibilities to identify the guidelines for possible fiscal adjustments of the Value Added Tax to contribute positively to the objectives of social justice, and its respective consequences on the population's welfare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maybe because of the inconclusive nature of the results on the impact of public capital on output at the regional level, the issue of the possible existence of the regional spillovers from public capital formation has received little attention. The objective of this paper is to provide evidence on the possible existence of such spillovers. We consider the case of Spain and its seventeen regions. Our methodological approach consists in estimating an aggregate VAR model for Spain as well as seventeen region-specific VAR models in which both capital installed in the region and capital installed outside the region are allowed to play a role in enhancing regional output. The estimation results can be summarized as follows. The aggregate effects of public capital formation in Spain are important. They cannot, however, be captured in their entirety by the direct effects in each region from public capital installed in the region itself. When for each region both the capital installed in the region and the capital installed outside the region are considered the total disaggregated effect from the seventeen regional models are very much in line with the aggregate results. Furthermore, the aggregate effect seems to be due in almost equal parts to the direct and spillover effects of public capital formation. Ultimately, this paper establishes the relevance of both capital installed in each region and spillover effects in the understanding of the regional decomposition of the aggregate effects of public capital formation. In doing so it opens the door to some tantalizing and potentially highly charged research issues in terms of the determination of the optimal location of public investment projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social Accounting Matrices (SAM) are normally used to analyse the income generation process. They are also useful, however, for analysing the cost transmission and price formation mechanisms. For price contributions, Roland-Holst and Sancho (1995) used the SAM structure to analyse the price and cost linkages through a representation of the interdependence between activities, households and factors. This paper is a further analysis of the cost transmission mechanisms, in which I add the capital account to the endogenous components of the Roland-Holst and Sancho approach. By doing this I reflect the responses of prices to the exogenous shocks in savings and investment. I also present an additive decomposition of the global price effects into categories of interdependence that isolates the impact on price levels of shocks in the capital account. I use a 1994 Social Accounting Matrix to make an empirical application of the Catalan economy. Keywords: social accounting matrix, cost linkages, price transmission, capital account. JEL Classification: C63, C69, D59.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationships between economic growth and environmental pressures are complex. Since the early nineties, the debate on these relationships has been strongly influenced by the Environmental Kuznets Curve hypothesis, which states that during the first stage of economic development environmental pressures increase as per capita income increases, but once a critical turning-point has been reached these pressures diminish as income levels continue to increase. However, to date such a delinking between economic growth and emission levels has not happened for most atmospheric pollutants in Spain. The aim of this paper is to analyse the relationship between income growth and nine atmospheric pollutants in Spain. In order to obtain empirical outcomes for this analysis, we adopt an input-output approach and use NAMEA data for the nine pollutants. First, we undertake a structural decomposition analysis for the period 1995-2000 to estimate the contribution of various factors to changes in the levels of atmospheric emissions. And second, we estimate the emissions associated with the consumption patterns of different groups of households classified according to their level of expenditure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We establish a one-to-one correspondence between the renormalizations and proper totally invariant closed sets (i.e., α-limit sets) of expanding Lorenz map, which enable us to distinguish periodic and non-periodic renormalizations. We describe the minimal renormalization by constructing the minimal totally invariant closed set, so that we can define the renormalization operator. Using consecutive renormalizations, we obtain complete topological characteriza- tion of α-limit sets and nonwandering set decomposition. For piecewise linear Lorenz map with slopes ≥ 1, we show that each renormalization is periodic and every proper α-limit set is countable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada al Department de Matemàtica Aplicada de la Montanuniversität Leoben, Àustria, entre agost i desembre del 2006. L’ objectiu ha estat fer recerca sobre digrafs infinits amb dos finals, connexos i localment finits, i, en particular, en digrafs amb dos finals i altament arc-transitius. Malnic, Marusic et al. van introduir un nou tipus de relació d’equivalència en els vèrtexs d’un dígraf, anomenades relacions d’assolibilitat, que generalitzen i tenen el seu origen en un problema posat per Cameron et al., on les classes de la relació d’equivalència eren vèrtexs que pertanyien a un camí alternat del dígraf . Malnic et al. en el mencionat article van establir connexions ben estretes entre aquestes relacions d’assolibilitat i l'estructura de finals i creixement dels digrafs localment finits i transitius. En aquest treball, s’ha caracteritzat per complet aquestes relacions d’assolibitat en el cas de dígrafs localment finits i transitius amb exactament dos finals, en termes de la descomposició en números primers del número de línies que genera el digraf amb dos finals. A més, es nega la Conjectura 1 sostinguda per Seifter que afirmava que un digraf connex localment finit amb més d’un final era necessàriament o be 0-, 1- o altament arc-transitiu. Seifer havia donat una solució parcial a la conjectura pel cas de digrafs regulars amb grau primer que tinguin un conjunt de tall connex. En aquest treball, es descriu una família infinita de dígrafs regulars de grau dos, amb dos finals, exactament 2-arc transitius i no 3-arc transitius. Així, es nega la Conjectura de Seifter en el cas general, fins i tot per grau primer. Tot i així, la solució parcial donada per Seifter en el seu article és en cert sentit la millor possible i l'existència un conjunt de tall connex essencial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salvia divinorum Epling & Jativa is an hallucinogenic mint traditionally used for curing and divination by the Mazatec Indians of Oaxaca, Mexico. Young people from Mexican cities were reported to smoke dried leaves of S. divinorum as a marijuana substitute. Recently, two S. divinorum specimens were seized in a large-scale illicit in-door and out-door hemp plantation. Salvinorin A also called divinorin A, a trans-neoclerodane diterpene, was identified in several organic solvent extracts by gas chromatography-mass spectrometry. The botanical identity of the plant was confirmed by comparing it to an authentic herbarium specimen. More plants were then discovered in Swiss horticulturists greenhouses. All these data taken together suggest that many attempts exist in Switzerland to use S. divinorum as a recreational drug. This phenomenon may be enhanced because neither the magic mint, nor its active compound are banned substances listed in the Swiss narcotic law.