985 resultados para Blake (Ship)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When designing a new passenger ship or modifiying an existing design, how do we ensure that the proposed design is safe from an evacuation point of view? In the building and aviation industries, computer based evacuation models are being used to tackle similar issues. In these industries, the traditonal restrictive prescriptive approach to design is making way for performance based design methodologies using risk assessment and computer simulation. In the maritime industry, ship evacuation models off the promise to quickly and efficiently bring these considerations into the design phase, while the ship is "on the drawing board". This paper describes the development of evacuation models with applications to passenger ships and further discusses issues concerning data requirements and validation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The FIRE Detection and Suppression Simulation (FIREDASS) project was concerned with the development of water misting systems as a possible replacement for halon based fire suppression systems currently used in aircraft cargo holds and ship engine rooms. As part of this program of work, a computational model was developed to assist engineers optimize the design of water mist suppression systems. The model is based on Computational Fluid Dynamics (CFD) and comprised of the following components: fire model; mist model; two-phase radiation model; suppression model; detector/activation model. In this paper the FIREDASS software package is described and the theory behind the fire and radiation sub-models is detailed. The fire model uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation. The radiation model is a six-flux model coupled to the gas (and mist) phase. As part of the FIREDASS project, a detailed series of fire experiments were conducted in order to validate the fire model. Model predictions are compared with data from these experiments and good agreement is found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the influence of exit separation, exit availability and seating configuration on aircraft evacuation efficiency and evacuation time. The purpose of this analysis is to explore how these parameters influence the 60-foot exit separation requirement found in aircraft certification rules. The analysis makes use of the airEXODUS evacuation model and is based on a typical wide-body aircraft cabin section involving two pairs of Type-A exits located at either end of the section with a maximum permissible loading of 220 passengers located between the exits. The analysis reveals that there is a complex relationship between exit separation and evacuation efficiency. A main finding of this work is that for the cabin section examined, with a maximum passenger load of 220 and under certification conditions, exit separations up to 170ft will result in approximately constant total evacuation times and average personal evacuation times. This practical exit separation threshold is decreased to 114ft if another combination of exits is selected. While other factors must also be considered when determining maximum allowable exit separations, these results suggest it is not possible to mandate a maximum exit separation without taking into consideration exit type, exit availability and aircraft configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very Large Transport Aircraft (VLTA) pose considerable challenges to designers, operators and certification authorities. Questions concerning seating arrangement, nature and design of recreational space, the number, design and location of internal staircases, the number of cabin crew required and the nature of the cabin crew emergency procedures are just some of the issues that need to be addressed. Other more radical concepts such as blended wing body (BWB) design, involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisles be made wider to accommodate more passengers? In this paper we demonstrate how computer based evacuation models can be used to investigate these issues through examination of staircase evacuation procedures for VLTA and aisle/exit configuration for BWB cabin layouts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing full-scale certification trials are high, the development and use of these evacuation modelling tools are essential. Furthermore, evacuation models provide insight into the evacuation process that is impossible to derive from a single certification trial. The airEXODUS evacuation model has been under development since 1989 with support from the UK CAA and the aviation industry. In addition to describing the capabilities of the airEXODUS evacuation model, this paper describes the findings of a recent CAA project aimed at investigating model accuracy in predicting past certification trials. Furthermore, airEXODUS is used to examine issues related to the Blended Wing Body (BWB) and Very Large Transport Aircraft (VLTA). These radical new aircraft concepts pose considerable challenges to designers, operators and certification authorities. BWB concepts involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisle be made wider to accommodate more passengers? In this paper we discuss various issues evacuation related issues associated VLTA and BWB aircraft and demonstrate how computer based evacuation models can be used to investigage these issues through examination of aisle/exit configurations for BWB cabin layouts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the influence of exit separation, exit availability and seating configuration on aircraft evacuation efficiency and evacuation time. The purpose of this analysis is to explore how these parameters influence the 60 foot exit separation requirement found in aircraft certification rules. The analysis makes use of the airEXODUS evacuation model and is based on a typical wide-body aircraft cabin section involving two pairs of Type-A exits located at either end of the section with a maximum permissible loading of 220 passengers located between the exits. The analysis reveals that there is a complex relationship between exit separation and evacuation efficiency. Indeed, other factors such as exit flow rate and exit availability are shown to exert a strong influence on critical exit separations. A main finding of this work is that for the cabin section examined under certification conditions, exit separations up to 170 feet will result in approximately constant total evacuation times and average personal evacuation times. This practical exit separation threshold is decreased to 114 feet if another combination of exits is selected. While other factors must also be considered when determining maximum allowable exit separations, these results suggest it is not possible to mandate a maximum exit separation without taking into consideration exit type, exit availability and aircraft configuration. This has implications when determining maximum allowable exit separations for wide and narrow body aircraft. It is also relevant when considering the maximum allowable separation between different exit types on a given aircraft configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033. The fire simulations include the action of a water mist system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analysis of survivor experiences from the World Trade Centre (WTC) evacuation of 11 September 2001. The experiences were collected from published accounts appearing in the print and electronic mass media and are stored in a relational database specifically developed for this purpose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper concerns a preliminary numerical simulation study of the evacuation of the World Trade Centre North Tower on 11 September 2001 using the buildingEXODUS evacuation simulation software. The analysis makes use of response time data derived from a study of survivor accounts appearing in the public domain. While exact geometric details of the building were not available for this study, the building geometry was approximated from descriptions available in the public domain. The study attempts to reproduce the events of 11 September 2001 and pursue several ‘what if’ questions concerning the evacuation. In particular, the study explores the likely outcome had a single staircase survived in tact from top to bottom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire sas well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritmeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033. The fire simulations include the action of a water mist system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The newly formed Escape and Evacuation Naval Authority regulates the provision of abandonment equipment and procedures for all Ministry of Defence Vessels. As such, it assures that access routes on board are evaluated early in the design process to maximize their efficiency and to eliminate, as far as possible, any congestion that might occur during escape. This analysis can be undertaken using a computer-based simulation for given escape scenarios and replicates the layout of the vessel and the interactions between each individual and the ship structure. One such software tool that facilitates this type of analysis is maritimeEXODUS. This tool, through large scale testing and validation, emulates human shipboard behaviour during emergency scenarios; however it is largely based around the behaviour of civilian passengers and fixtures and fittings of merchant vessels. Hence there existed a clear requirement to understand the behaviour of well-trained naval personnel as opposed to civilian passengers and be able to model the fixtures and fittings that are exclusive to warships, thus allowing improvements to both maritimeEXODUS and other software products. Human factor trials using the Royal Navy training facilities at Whale Island, Portsmouth were recently undertaken to collect data that improves our understanding of the aforementioned differences. It is hoped that this data will form the basis of a long-term improvement package that will provide global validation of these simulation tools and assist in the development of specific Escape and Evacuation standards for warships. © 2005: Royal Institution of Naval Architects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report covers the testing and evaluation of the airEXODUS evacuation model. airEXODUS has been developed for evacuation certification testing, crew training and aircraft design. The report demonstrates the effectiveness of the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on research work undertaken for the European Commission funded study GMA2/2000/32039 Very Large Transport Aircraft (VLTA) Emergency Requirements Research Evacuation Study (VERRES). A particular focus was on evacuation issues with a detailed study of evacuation performance using computer models being undertaken as part of Work Package 2. This paper describes this work and investigates the use of internal stairs during evacuation using computer simulation.