996 resultados para Biology, General|Biology, Genetics|Chemistry, Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the novel synthesis of two sugar units that are central intermediates for the formation of members of the bicyclo-DNA and -RNA family. The synthesis starts from commercially available 1,2: 5,6-di-O-isopropylidene-alpha-D-glucofuranose. The key step involves the elaboration of a carbocyclic ring in a furanoside by rhodium(I)-catalyzed hydroacylation. Via this pathway, one of the sugar units is available in 8 steps and in an overall yield of 27%, while its deoxy derivative is obtained in 11 steps, which is 5 steps fewer than in our previous synthesis of this compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

;Small interfering RNAs (siRNAs) can be exploited for the selective silencing of disease-related genes via the RNA interference (RNAi) machinery and therefore raise hope for future therapeutic applications. Especially chemically modified siRNAs are of interest as they are expected to convert lead siRNA sequences into effective drugs. To study the potential of tricyclo-DNA (tc-DNA) in this context we systematically incorporated tc-DNA units at various positions in a siRNA duplex targeted to the EGFP gene that was expressed in HeLa cells. Silencing activity was measured by FACS, mRNA levels were determined by RT-PCR and the biostability of the modifed siRNAs was determined in human serum. We found that modifications in the 3'-overhangs in both the sense and antisense strands were compatible with the RNAi machinery leading to similar activities compared to wild type (wt) siRNA. Additional modifications at the 3'-end, the 5'- end and in the center of the sense (passenger) strand were also well tolerated and did not compromise activity. Extensive modifications of the 3'- and the 5'-end in the antisense (guide) strand, however, abolished RNAi activity. Interestingly, modifications in the center of the duplex on both strands, corresponding to the position of the cleavage site by AGO2, increased efficacy relative to wt by a factor of 4 at the lowest concentrations (2 nM) investigated. In all cases, reduction of EGFP fluorescence was accompanied with a reduction of the EGFP mRNA level. Serum stability analysis further showed that 3'-overhang modifications only moderately increased stability while more extensive substitution by tc-DNA residues significantly enhanced biostability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of a novel bicyclo-thymidine nucleoside bearing an ester functionality at C(6') (bc(alpha-alk)-nucleosides) is reported. This nucleoside was incorporated into oligodeoxynucleotides via solid phase phosphoramidite chemistry, and the ester moiety was post-synthetically converted to an amide or a carboxy group, or was left unchanged. Thermal melting data (T-m) with complementary DNA and RNA were collected and compared to natural DNA and to bc- and bc(ox)-DNA. It was found that single incorporations of bc(alpha-alk)-nucleosides in DNA duplexes were destabilizing by 0.5 to 2.5 degrees C/mod, whereas two consecutive bc(alpha-alk)-residues were less destabilizing, and in some cases even stabilizing by 0.5 degrees C/mod. In duplexes with complementary RNA, isolated bc(alpha-alk)-residues destabilized the duplex by -1.0 to -4.0 degrees C/mod, depending on the chemical nature of the substituent, whereas two consecutive modifications were only destabilizing by 0.3-1.0 degrees C/mod. The pairing selectivity was similar to that of unmodified or bc-DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel bicyclo-T nucleosides carrying a hydroxyl or a carboxymethyl substituent in C(6')-[alpha]-position were prepared and incorporated into oligodeoxynucleotides. During oligonucleotide deprotection the carboxymethyl substituent was converted into different amide substituents in a parallel way. Tm-measurements showed no dramatic differences in both, thermal affinity and mismatch discrimination, compared to unmodified oligonucleotides. The post-synthetic modification of the carboxymethyl substituent allows in principle for a parallel preparation of a library of oligonucleotides carrying diverse substituents at C(6'). In addition, functional groups can be placed into unique positions in a DNA double helix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemotherapeutic drug 5-fluorouracil (5-FU) is widely used for treating solid tumors. Response to 5-FU treatment is variable with 10-30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6-dihydrouracil (UH(2) ), and analogously, 5-FU into 5-fluoro-5,6-dihydrouracil (5-FUH(2) ). Combined quantification of U and UH(2) with 5-FU and 5-FUH(2) may provide a pre-therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography-tandem mass spectrometry assay for simultaneous quantification of U, UH(2) , 5-FU and 5-FUH(2) in human plasma. Samples were prepared by liquid-liquid extraction with 10:1 ethyl acetate-2-propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC(18) column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01-10 μm for U, 0.1-10 μm for UH(2) , 0.1-75 μm for 5-FU and 0.75-75 μm for 5-FUH(2) , covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5-FU-treated colorectal cancer patients. The present method merges the analysis of 5-FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5-FU-based chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic core-shell nanoparticles have received increasing attention in recent years. This paper presents a detailed study of Au-Hg nanoalloys, whose composing elements show a large difference in cohesive energy. A simple method to prepare Au@Hg particles with precise control over the composition up to 15 atom% mercury is introduced, based on reacting a citrate stabilized gold sol with elemental mercury. Transmission electron microscopy shows an increase of particle size with increasing mercury content and, together with X-ray powder diffraction, points towards the presence of a core-shell structure with a gold core surrounded by an Au-Hg solid solution layer. The amalgamation process is described by pseudo-zero-order reaction kinetics, which indicates slow dissolution of mercury in water as the rate determining step, followed by fast scavenging by nanoparticles in solution. Once adsorbed at the surface, slow diffusion of Hg into the particle lattice occurs, to a depth of ca. 3 nm, independent of Hg concentration. Discrete dipole approximation calculations relate the UV-vis spectra to the microscopic details of the nanoalloy structure. Segregation energies and metal distribution in the nanoalloys were modeled by density functional theory calculations. The results indicate slow metal interdiffusion at the nanoscale, which has important implications for synthetic methods aimed at core-shell particles.

Relevância:

100.00% 100.00%

Publicador: