901 resultados para Bioavailability
Resumo:
Examining factors that affect vitamin D status in the fast-growing elderly population of Miami-Dade, Florida, is needed. Vitamin D deficiency in older adults has been linked to correlates of disability, including falls and fractures, and cardiovascular disease. The purpose of this study was to determine the proportion of vitamin D insufficient individuals and their relationship with vitamin D insufficiency in older adults (n=97) living in Miami-Dade. We evaluated the association between vitamin D status and 1) dual task physical performance to understand the link between vitamin D and cognition in the context of mobility; and 2) cardiometabolic risk, measured by galvanic skin response, pulse oximetry, and blood pressure to create a composite score based on autonomic nervous system and endothelial function. Participants completed baseline assessments that included serum levels of vitamin D, anthropometrics, body composition, dual task physical performance and cardiometabolic risk. Surveys to evaluate vitamin D intake, sun exposure, physical activity, and depressive symptoms were completed. Spearman’s correlations, independent t-tests, paired t-tests, repeated measures ANOVAs, and multiple logistic and linear regressions were used to examine the relationship of vitamin D insufficiency (25(OH)D /ml) and sufficiency (25(OH)D ≥30 ng/ml) with determinants of vitamin D status, dual task physical performance variables and cardiometabolic risk scores. Although the proportion of vitamin D insufficient individuals was lower when compared to the prevalance of the general United States elderly population, it was still common in healthy community-dwelling older adults living in Miami-Dade County, especially among Hispanics. Factors that affected skin synthesis (ethnicity, and sun exposure), and bioavailability/metabolism (obesity) were significant predictors of vitamin D status. Vitamin D insufficiency was not significantly correlated with worse dual task physical performance; however, cognitive performance was worse in the vitamin D insufficient group. Our results suggest a relationship of vitamin D insufficiency with executive dysfunction, and support an association with cardiometabolic risk using an innovative electro-sensor complex, possibly by modulating autonomic nervous system activity and vascular function, thus affecting cardiac performance.
Resumo:
Reactive oxygen species (ROS) decreases bioavailability of nitric oxide (NO) and impairs NO-dependent relaxations. Like NO, hydrogen sulfide (H2S) is an antioxidant and vasodilator; however, the effect of ROS on H2S-induced relaxations is unknown. Here we investigated whether ROS altered the effect of H2S on vascular tone in mouse aorta and determined whether resveratrol (RVT) protects it via H2S. Pyrogallol induced ROS formation. It also decreased H2S formation and relaxation induced by l-cysteine and in mouse aorta. Pyrogallol did not alter sodium hydrogensulfide (NaHS)-induced relaxation suggesting that the pyrogallol effect on l-cysteine relaxations was due to endogenous H2S formation. RVT inhibited ROS formation, enhanced l-cysteine-induced relaxations and increased H2S level in aortas exposed to pyrogallol suggesting that RVT protects against "H2S-dysfunctions" by inducing H2S formation. Indeed, H2S synthesis inhibitor AOAA inhibited the protective effects of RVT. RVT had no effect on Ach-induced relaxation that is NO dependent and the stimulatory effect of RVT on H2S-dependent relaxation was also independent of NO. These results demonstrate that oxidative stress impairs endogenous H2S-induced relaxations and RVT offers protection by inducing H2S suggesting that targeting endogenous H2S pathway may prevent vascular dysfunctions associated by oxidative stress.
Resumo:
Objective: To assess the epidemiological evidence on dietary fiber intake and chronic diseases and make public health recommendations for the population in Romania based on their consumption. Populations that consume more dietary fiber from cereals, fruits and vegetables have less chronic disease. Dietary Reference Intakes recommend consumption of 14 g dietary fiber per 1,000 kcal, or 25 g for adult women and 38 g for adult men, based on epidemiologic studies showing protection against cardiovascular disease, stroke, hypertension, diabetes, obesity, metabolic syndrome, gastrointestinal disorders, colorectal -, breast -, gastric -, endometrial -, ovarian - and prostate cancer. Furthermore, increased consumption of dietary fiber improves serum lipid concentrations, lowers blood pressure, blood glucose leads to low glycemic index, aids in weight loss, improve immune function, reduce inflammatory marker levels, reduce indicators of inflammation. Dietary fibers contain an unique blend of bioactive components including resistant starches, vitamins, minerals, phytochemicals and antioxidants. Dietary fiber components have important physiological effects on glucose, lipid, protein metabolism and mineral bioavailability needed to prevent chronic diseases. Materials and methods: Data regarding diet was collected based on questionnaires. We used mathematical formulas to calculate the mean dietary fiber intake of Romanian adult population and compared the results with international public health recommendations. Results: Based on the intakes of vegetables, fruits and whole cereals we calculated the Mean Dietary Fiber Intake/day/person (MDFI). Our research shows that the national average MDFI was 9.8 g fiber/day/person, meaning 38% of Dietary Requirements, and the rest of 62% representing a “fiber gap” that we have to take into account. This deficiency predisposes to chronic diseases. Conclusions and recommendations:The poor control of relationship between dietary fiber intake and chronic diseases is a major issue that can result in adverse clinical and economic outcomes. The population in Romania is at risk to develop such diseases due to the deficient fiber consumption. A model of chronic diseases costs is needed to aid attempts to reduce them while permitting optimal management of the chronic diseases. This paper presents a discussion of the burden of chronical disease and its socio-economic implications and proposes a model to predict the costs reduction by adequate intake of dietary fiber.
Resumo:
Prolonged high-intensity training seems to result in increased systemic inflammation, which might explain muscle injury, delayed onset muscle soreness, and overtraining syndrome in athletes. Furthermore, an impaired immune function caused by strenuous exercise leads to the development of upper respiratory tract infections in athletes. Nutraceuticals might help counteract these performance-lowering effects. The use of nanotechnology is an interesting alternative to supply athletes with nutraceuticals, as many of these substances are insoluble in water and are poorly absorbed in the digestive tract. The present chapter starts with a brief review of the effects of exercise on immunity, followed by an analysis on how nutraceuticals such as omega-3 fatty acids, glutamine, BCAAs, or phytochemicals can counteract negative effects of strenuous exercise in athletes. Finally, how nanostructured delivery systems can constitute a new trend in enhancing bioavailability and optimizing the action of nutraceuticals will be discussed, using the example of food beverages.
Resumo:
The growing concerns for physical wellbeing and health have been reflected in the way we choose food in our table. Nowadays, we are all more informed consumers and choose healthier foods. On the other hand, stroke, cancer and atherosclerosis may be somehow minimized by the intake of some bioactive compounds present in food, the so-called nutraceuticals and functional foods. The aim of this work was to make a revision of the published studies about the effects of some bioactive compounds, namely lycopene in human health, in the prevention of diseases, thus playing the role of a functional food. Free radical in human body can induce cell damage and consequently can be responsible for the development of some cancers and chronic diseases. Lycopene is one of the most powerful antioxidants known, being the predominant carotenoid in tomato. The respective chemistry, bioavailability, and its functional role in the prevention of several diseases will be object of this work. On the other hand, the inclusion of lycopene in some foods can also be made by biotechnology and represents a way to recover the wastes in the tomato industry with nutritional positive effects in health.
Resumo:
The overall objective of this thesis was to study the effects of regular and high (super-) doses of phytase in the gut of broilers, with the aim of documenting the mechanism of their action leading to improvements in animal health. Phytase is often supplemented to commercial broiler diets to facilitate the hydrolysis of plant phytate and release of phosphorus for utilisation. Although not the original intention of its addition, phytase supplementation leads to improvements in growth performance parameters and enhanced nutrient utilisation. Further benefits have also been observed following the addition of super-doses of phytase which are not explained by an increase in phosphorus release, and thus have been termed ‘extra-phosphoric effects’. Using diets formulated to be adequate or marginally deficient in available phosphorus (aP; forming the negative control, NC), phytase was supplemented at 1,500 and 3,000 FTU/kg phytase in the first study (both super-doses) and the partitioning of nutrients within the body was investigated. It appeared that there were some metabolic changes between 1,500 and 3,000 FTU/kg, switching between protein and fat accretion, potentially as a consequence of nutrient availability, although these changes were not reflected by changes in growth performance parameters. However, the loss of the NC treatment without phytase on day 12 limits the comparison of the phytase within the NC treatment, but does allow for comparison of each dose at adequate or low dietary aP levels. As expected, a greater degree of phytate hydrolysis was achieved with 3,000 than with 1,500 FTU/kg phytase, but changes in carcass accretion characteristics were greater with 1,500 than 3,000 FTU/kg. Using these findings and the observation that there were no further changes in the parameters measured by increasing phytase from 1,500 to 3,000 FTU/kg (aside from phytate hydrolysis), 1,500 FTU/kg phytase was selected as the super-dose to be used in subsequent studies. The next study considered the influence of regular (500 FTU/kg) and super doses (1,500 FTU/kg) of phytase from within the gut. Overall, it was observed that changes were occurring to the gut environment, which ultimately would influence the absorptive capacity and conditions for further phytate hydrolysis. Dietary treatment influenced gut conditions such as pH, intestinal morphology and bacterial populations which can subsequently influence nutrient utilisation and potential for growth. The subsequent study was designed to investigate the effects within the gut in more detail. The release of nutrients from phytate hydrolysis and their bioavailability within the digesta can influence conditions within intestine, facilitating enhanced absorption. One of the parameters investigated was the expression of genes involved in the transport of nutrients in the intestine. Overall, there were few significant dietary treatment influences on gene expression in the intestine, however there was a dose-dependent response of phytase on the expression of the jejunual divalent mineral transporter. This indicates a change in divalent mineral bioavailability in the intestine, with correlations with inositol phosphate esters (IPs) being identified. This is likely explained by the IPs produced by phytase hydrolysis and accumulating in the digesta, differing between regular and high doses of phytase. It became apparent that interactions between the products of phytate hydrolysis (IP3, IP4) and minerals in the digesta had the potential to influence the gut environment and subsequent nutrient bioavailability and overall phytase action. The final study was designed to increase the content of the IPs, and investigate the influence of phytase under these conditions. As the complete hydrolysis of phytate to myo-inositol has been reported to be beneficial due to its proposed insulin mimetic effects, myo-inositol was also supplemented to one of the diets to see if any further benefits would be observed when supplemented alongside super-doses of phytase. Neither increased concentrations of the higher IP esters (IP6, IP5 and IP4) nor myo-inositol (myo-) had any effect on broiler growth performance, however there were still apparent beneficial influences of phytase supplementation. The results suggest considerable and important interactions between minerals and IP esters within the digesta, which ultimately have the potential to influence gut conditions and thus nutrient utilisation and growth performance. Reduced concentrations of blood glucose in the high IP ester diet with additional phytase supplementation suggest some insulin-like effects of myo- production. Additionally, the lack of effect of myo- supplementation on blood glucose and insulin concentrations suggests a difference between the structure of phytase-produced myo- and supplemented myo-. Although there were no improvements in growth performance by increasing phytase from 500 to 1,500 FTU/kg, there were changes occurring at the level of the gut and expression of genes in the intestine, influencing nutrient utilisation and the partitioning of nutrients within the body. There are many factors to be considered when supplementing phytase, with dietary nutrient content and nutrient release and IP production during phytate hydrolysis having an influence on phytase action, nutrient absorption and conditions within the gut. Super-doses of phytase may be beneficial for maintaining optimal gut conditions, clearing IP esters from the digesta, reducing their potential to form complexes with minerals and other nutrients, ultimately influencing the efficiency of production.
Resumo:
Biomarkers are nowadays essential tools to be one step ahead for fighting disease, enabling an enhanced focus on disease prevention and on the probability of its occurrence. Research in a multidisciplinary approach has been an important step towards the repeated discovery of new biomarkers. Biomarkers are defined as biochemical measurable indicators of the presence of disease or as indicators for monitoring disease progression. Currently, biomarkers have been used in several domains such as oncology, neurology, cardiovascular, inflammatory and respiratory disease, and several endocrinopathies. Bridging biomarkers in a One Health perspective has been proven useful in almost all of these domains. In oncology, humans and animals are found to be subject to the same environmental and genetic predisposing factors: examples include the existence of mutations in BR-CA1 gene predisposing to breast cancer, both in human and dogs, with increased prevalence in certain dog breeds and human ethnic groups. Also, breast feeding frequency and duration has been related to a decreased risk of breast cancer in women and bitches. When it comes to infectious diseases, this parallelism is prone to be even more important, for as much as 75% of all emerging diseases are believed to be zoonotic. Examples of successful use of biomarkers have been found in several zoonotic diseases such as Ebola, dengue, leptospirosis or West Nile virus infections. Acute Phase Proteins (APPs) have been used for quite some time as biomarkers of inflammatory conditions. These have been used in human health but also in the veterinary field such as in mastitis evaluation and PRRS (porcine respiratory and reproductive syndrome) diagnosis. Advantages rely on the fact that these biomarkers can be much easier to assess than other conventional disease diagnostic approaches (example: measured in easy to collect saliva samples). Another domain in which biomarkers have been essential is food safety: the possibility to measure exposure to chemical contaminants or other biohazards present in the food chain, which are sometimes analytical challenges due to their low bioavailability in body fluids, is nowadays a major breakthrough. Finally, biomarkers are considered the key to provide more personalized therapies, with more efficient outcomes and fewer side effects. This approach is expected to be the correct path to follow also in veterinary medicine, in the near future.
Resumo:
Phosphates have been used for lead immobilization in soils but the influence of soil type is not fully understood. In this work, lead chemical behaviour in two Brazilian latosoils (LA and LV) was studied via treatment with phosphates. The Pb concentration in Toxicity Characteristic Leaching Procedure (TCLP) solutions was decreased in all treatments. After treatment with H3PO4 the Pb concentration in the LA remained within the regulatory limit established by EPA. The ecotoxicological results with Daphnia pulex showed that this treatment reduced the lead bioavailability. Sequential extraction analyses showed that the lead was transferred from the most available to the residual fraction. Relevant decrease of soluble lead was observed in all phosphate treatments.
Resumo:
Cancer is a disease that has plagued scientists for decades, and how to treat cancer and its complications are inevitable topics in current scientific research. Cancer pain is a major factor that reduces the quality of life of patients. Therefore, the development of analgesic agents with minimal adverse side effects, especially with low addiction, has attracted more and more attention. Among them, opioid analgesics are widely used to alleviate cancer pain and improve the quality of life of patients with advanced cancer, such as in the palliative therapy. Although peptide drugs are efficient, selective and safe, they have several unignorable disadvantages such as poor biological stability, rapid excretion, difficulty in penetrate blood brain barrier. In order to solve these problems, peptidomimetics were developed by introducing unnatural/modified amino acids, decorated peptide backbone, conformational restrictions and secondary structure mimics in peptide sequence. Compared with peptides, peptidomimetics have improved biological stability, increased bioavailability, high affinity and selectivity for receptor binding, and decreased adverse side effects. As the second part of this thesis, I explored the opportunity to design peptide-functionalized responsive biomaterials for the detection of cancer cell and the selective delivery of cytotoxic drugs. The conjugation of peptides with biomaterials enhanced the stability of the loaded drugs, improved targeted delivery, decreased side effects, and increased bioavailability. The precise and controllable drug delivery platform has profound application prospects in cancer treatment. Grafting specific peptides sequence on the surface of biomaterials can satisfy different drug delivery demands according to the characteristics of both peptides and biomaterials. For example, the introduction of tumor-targeting peptides can guide biomaterials into tumor lesions, and blood-brain barrier (BBB) shuttle peptides can lead biomaterials to penetrate the BBB, etc.
Resumo:
The industrial PhD project presented here is part of the R&D strategies of the Lipinutragen company. The innovation brought by the company concerns nutrilipidomics, i.e. the correlation between the lipid composition (in fatty acids) of the cell membrane and lipid-based nutraceuticals, especially starting from the well-known dependence of the lipid composition on the intake of essential fats, omega- 6 and omega-3 polyunsaturated fatty acids. Among the results obtained from the membrane lipidomic profiles, the case of autistic subjects is here highlighted, showing the significant deficiency of docosahexaenoic acid (DHA). The activity during the PhD was devoted to the nutrilipidomic approach. Part of the activities were devoted to scientific research in lipidomics: a) the study of lipidomic profiles in the frame of two collaboration projects: one with the group of Dr. I. Tueros at AZTI, Bilbao, regading obese population, and the other one regarding seed germination with the changes of the fatty acid profiles with the group of prof. A. Balestrazzi of the University of Parma; b) the liposome preparation for protection and lifetime prolongation of the peptide somatostatin, which was an important premise to the formulation of the DHA-containing microemulsion. The activities was also focused on the development of DHA-containing nutraceutical formulations in the form of emulsion, overcoming the difficulty of the capsule ingestion, to be administered orally. The work pointed to study the combination of active ingredients, based on the previous know-how regarding the bioavailability for the cell membrane incorporation. The ingredients of the formulation were studied and tested in vitro for the bioavailability of DHA to be incorporated in the cell membranes of different types of cultured cells. Part of this study is covered by non-disclosure agreement since it belongs to the know-how of Lipinutragen.
Resumo:
Cured meats and dairy products are criticized for their salt content and synthetic additives. This has led to the development of strategies to reduce and replace these ingredients. Since the food matrix and technological processes can affect the bioaccessibility of nutrients, it is necessary to study their release during digestion to determine the real nutritional value of foods. In the first part of this PhD project, the impact on the nutritional quality of the reduction of sodium content and of the replacement of synthetic nitrates/nitrites with a combination of innovative formulations was evaluated in Parmigiano Reggiano Cheese and salami. For this purpose, an in vitro digestion model combined with different analytical techniques was used. The results showed that fatty acids and proteins release increased over time during digestion. At the end of digestion, the innovative formulation/processing did not negatively affect fatty acids release and protein hydrolysis, and led to the formation of bioactive peptides. The excessive intake of sugars is correlated with metabolic diseases. After the intestinal uptake, their release in the blood stream depends on their metabolic fate within the enterocyte. In the second part of this PhD project, the absorption and metabolism of glucose, fructose and sucrose was evaluated using intestinal cell line. A faster absorption of fructose than glucose was observed, and a different modulation of the synthesis/transport of other metabolites by monosaccharides was shown. Intestinal cells were also used to verify the stability and intestinal uptake of vitamins (A and D3) delivered to cells through two vehicles. It was shown that the presence of lipids protected the vitamin from external factors such as light, heat and oxygen, and improved their bioavailability Overall, the results obtained in this PhD project confirmed that considering only the chemical composition of foods is not sufficient to determine their nutritional value.
Resumo:
In recent decades, the use of organic fertilizers has gained increasing interest mainly for two reasons: their ability to improve soil fertility and the need to find a sustainable alternative to mineral and synthetic fertilizers. In this context, sewage sludge is a useful organic matrix that can be successfully used in agriculture, due to its chemical composition rich in organic matter, nitrogen, phosphorus and other micronutrients necessary for plant growth. This work investigated three indispensable aspects (i.e., physico-chemical properties, agronomic efficiency and environmental safety) of sewage sludge application as organic fertilizer, emphasizing the role of tannery sludge. In a comparison study with municipal sewage sludge, results showed that the targeted analyses applied (total carbon and nitrogen content, isotope ratio of carbon and nitrogen, infrared spectroscopy and thermal analysis) were able to discriminate tannery sludge from municipal ones, highlighting differences in composition due to the origin of the wastewater and the treatment processes used in the plants. Regarding agronomic efficiency, N bioavailability was tested in a selection of organic fertilizers, including tannery sludge and tannery sludge-based fertilizers. Specifically, the hot-water extractable N has proven to be a good chemical indicator, providing a rapid and reliable indication of N bioavailability in soil. Finally, the behavior of oxybenzone (an emerging organic contaminant detected in sewage sludge) in soils with different physico-chemical properties was studied. Through adsorption and desorption experiments, it was found that the mobility of oxybenzone is reduced in soils rich in organic matter. Furthermore, through spectroscopic methods (e.g., infrared spectroscopy and surface-enhanced Raman spectroscopy) the mechanisms of oxybenzone-humic acids interaction were studied, finding that H-bonds and π-π stacking were predominantly present.
Resumo:
Neuronal microtubules assembly and dynamics are regulated by several proteins including (MT)-associated protein tau, whose aberrant hyperphosphorylation promotes its dissociation from MTs and its abnormal deposition into neurofibrillary tangles, a common neurotoxic hallmarks of neurodegenerative tauopathies. To date, no disease-modifying drugs have been approved to combat CNS tau-related diseases. The multifactorial etiology of these conditions represents one of the major limits in the discovery of effective therapeutic options. In addition, tau protein functions are orchestrated by diverse post-translational modifications among which phosphorylation mediated by PKs plays a leading role. In this context, conventional single-target therapies are often inadequate in restoring perturbed networks and fraught with adverse side-effects. This thesis reports two distinct approaches to hijack MT defects in neurons. The first is focused on the rational design and synthesis of first-in-class triple inhibitors of GSK-3β, FYN, and DYRK1A, three close-related PKs, which act as master regulators of aberrant tau hyperphosphorylation. A merged multi-target pharmacophore strategy was applied to simultaneously modulate all three targets and achieve a disease-modifying effect. Optimization of ARN25068 by a computationally and crystallographic driven SAR exploration, allowed to rationalize the key structural modifications to maintain a balanced potency against all three targets and develop a new generation of quite well-balanced analogs exhibiting improved physicochemical properties, a good in vitro ADME profile, and promising cell-based anti-tau phosphorylation activity. In Part II, MT-stabilizing compounds have been developed to compensate MT defects in tau-related pathologies. Intensive chemical effort has been devoted to scaling up BL-0884, identified as a promising MT-normalizing TPD, which exhibited favorable ADME-PK, including brain penetration, oral bioavailability, and brain pharmacodynamic activity. A suitable functionalization of the exposed hydroxyl moiety of BL-0884 was carried out to generate corresponding esters and amides possessing a wide range of applications as prodrugs and active targeting for cancer chemotherapy.
Resumo:
Chemotherapeutic drugs can in many ways disrupt the replication machinery triggering apoptosis in cancer cells: some act directly on DNA and others block the enzymes involved in preparing DNA for replication. Cisplatin-based drugs are common as first-line cancer chemotherapics. Another example is etoposide, a molecule that blocks topoisomerase II α leading to the inhibition of dsDNA replication. Despite their efficacy, cancer cells can respond to these treatments over time by overtaking their effects, leading to drug resistance. Chemoresistance events can be triggered by the action of enzymes like DNA polymerase ƞ (Pol η). This polymerase helps also to bypass drug-induced damage in cancer cells, allowing DNA replication and cancer cells proliferation even when cisplatin-based chemotherapeutic drugs are in use. Pol ƞ is a promising drug discovery target, whose inhibition would help in overcoming of drug resistance. This study aims to identify a potent and selective Pol ƞ inhibitor able to improve the efficacy of platinum-based chemotherapeutic drugs. We report the discovery of compound 64 (ARN24964), after an extensive SAR reporting 35 analogs. We evaluated compound 64 on four different cell lines. Interestingly, the molecule is a Pol η inhibitor able to act synergistically with cisplatin. Moreover, we also synthesized a prodrug form that allowed us to improve its stability and the bioavailability. This compound represents an advanced scaffold featuring good potency and DMPK properties. In addition to this central theme, this thesis also describes our efforts in developing and characterize a novel hybrid inhibitor/poison for the human topoisomerase II α enzyme. In particular, we performed specific assays to study the inhibiton of Topoisomesare II α and we evaluated compounds effect on three cancer cell lines. These studies allowed us to identify a compound that is able to inhibit the enzyme with a good pK and a good potency.
Resumo:
Physiological and environmental stressors can disrupt barrier integrity at epithelial interfaces (e.g., uterine, mammary, intestinal, and lung), which are constantly exposed to pathogens that can lead to the activation of the immune system. Unresolved inflammation can result in the emergence of metabolic and infectious diseases. Maintaining cow health and performance during periods of immune activation such as in the peripartum or under heat stress represents a significant obstacle to the dairy industry. Feeding microencapsulated organic acids and pure botanicals (OAPB) has shown to improve intestinal health in monogastric species and prevent systemic inflammation via the gut-liver axis. Feeding unsaturated fatty acids (FA) such as oleic acid (OA) and very-long-chain omega-3 (VLC n-3) FA are of interest in dairy cow nutrition because of their potential to improve health, fertility, and milk production. In the first study, we evaluated the effects of heat stress (HS) conditions and dietary OAPB supplementation on gut permeability and milk production. In parallel with an improved milk performance and N metabolism, cows supplemented with OAPB also had an enhanced hepatic methyl donor status and greater inflammatory and oxidative stress status compared to the HS control group. In a second study, we evaluated the relative bioavailability of VLC n-3 in cows fed a bolus of rumen-protected (RP) fish oil (FO). In a third study, we proved the interaction between RPFO and RP choline to promote the synthesis of phosphatydilcholines. Lipid forms that support hepatic triglyceride export and can prevent steatosis in dairy cows. The last study, demonstrated that algae oil outperforms against a toxin challenge compared to FO and that feeding RPOA modulates energy partitioning relative to n-3 FA-containing oils. Overall, this thesis confirms the need and the effectiveness of different strategies that aimed to improve dairy cows’ health and performance under heat stress, inflammation or metabolic disease.