979 resultados para Behavioral-response
Resumo:
Polycrystalline samples of oxides of the general formula LiM(V)M(VI)O(6) (M(V) = Nb, Ta; M(VI) = Mo, W), crystallizing in a non-centrosymmetric (space group P (4) over bar 2(1)m) trirutile structure, exhibit second harmonic generation (SHG) of 1064 nm radiation with efficiencies 15-45 times that of alpha-quartz; interestingly, the SHG response is retained by the protonated derivatives HM(V)M(VI)O(6) . xH(2)O, and their n-alkylamine intercalates as well.
Resumo:
An isolated rotor with blades interconnected through viscoelastic elements is analyzed for response, loads and stability in moment trim under forward flight conditions. A conceptual model of a multibladed rotor with rigid flap and lag motions is considered, Although the interconnecting elements are placed in the In-plane direction, considerable coupling between the flap-lag motions of the blades can occur in certain ranges of interblade element stiffness. Interblade coupling can yield significant changes in the response, loads and stability which are dependent on the interblade element and rotor parameters.
Resumo:
We present the details of a formalism for calculating spatially varying zero-frequency response functions and equal-time correlation functions in models of magnetic and mixed-valence impurities of metals. The method is based on a combination of perturbative, thermodynamic scaling theory [H. R. Krishna-murthy and C. Jayaprakash, Phys. Rev. B 30, 2806 (1984)] and a nonperturbative technique such as the Wilson renormalization group. We illustrate the formalism for the spin-1/2 Kondo problem and present results for the conduction-spin-density�impurity-spin correlation function and conduction-electron charge density near the impurity. We also discuss qualitative features that emerge from our calculations and discuss how they can be carried over to the case of realistic models for transition-metal impurities.
Resumo:
Titanium flats were scribed by silicon carbide wedges over ranges of temperatures and applied strains and with lubrication. The response of the material to scribing was noted by recording the coefficient of friction, the surface morphology of track and the subsurface deformation. Additional data were obtained from (1) uniaxial compression of titanium, (2) scribing of oxygen-free high conductivity copper and (3) scribing of aluminium under dry and lubricated conditions to analyse and explain the observed variation in response of titanium to scribing with strain, temperature and lubrication.
Resumo:
A rotor-body system with blades interconnected through viscoelastic elements is analyzed for response, loads, and stability in propulsive trim in ground contact and under forward-flight conditions, A conceptual model of a multibladed rotor with rigid flap and lag motions, and the fuselage with rigid pitch and roll motions is considered, Although the interconnecting elements are placed in the in-plane direction, considerable coupling between the flap-lag motions of the blades can occur in certain ranges of interblade element stiffness, Interblade coupling can yield significant changes in the response, loads, and stability that are dependent on the interblade element and rotor-body parameters, Ground resonance stability investigations show that by tuning the interblade element stiffness, the ground resonance instability problem can be reduced or eliminated, The interblade elements with damping and stiffness provide an effective method to overcome the problems of ground and air resonance.
Resumo:
We investigate the influence of the ferromagnetic layer on the magnetic and transport properties of YBa2Cu3O7-delta in YBa2Cu3O7-delta (YBCO)/La0.7Sr0.3MnO3 (LSMO) bilayers. The temperature dependent dc magnetization study reveals the presence of magnetic anisotropy in YBCO/LSMO bilayer as compared to the pure YBCO layer. The ac susceptibility study on YBCO/LSMO bilayers reveals stronger pinning and the temperature dependent critical current is found to be less prone to temperature. Besides, the current (I) dependent electrical transport studies on YBCO/LSMO exhibit a significant reduction in the superconducting T-c with increase in I and it follows I-2/3 dependence in accord with the pair breaking effect. The higher reduction of superconducting T-c in YBCO/LSMO is believed to be due to the enhanced pair-breaking induced by the spin polarized carriers being injected into the superconductor. (C) 2011 American Institute of Physics. doi: 10.1063/1.3560029]
Resumo:
We study the transient response of a colloidal bead which is released from different heights and allowed to relax in the potential well of an optical trap. Depending on the initial potential energy, the system's time evolution shows dramatically different behaviors. Starting from the short-time reversible to long-time irreversible transition, a stationary reversible state with zero net dissipation can be achieved as the release point energy is decreased. If the system starts with even lower energy, it progressively extracts useful work from thermal noise and exhibits an anomalous irreversibility. In addition, we have verified the Transient Fluctuation Theorem and the Integrated Transient Fluctuation Theorem even for the non-ergodic descriptions of our system. Copyright (C) EPLA, 2011
Resumo:
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Resumo:
Background: Duration of seizure by itself is an insufficient criterion for a therapeutically adequate seizure in ECT. Therefore, measures of seizure EEG other than its duration need to be explored as indices of seizure adequacy and predictors of treatment response. We measured the EEG seizure using a geometrical method-fractal dimension (FD) and examined if this measure predicted remission. Methods: Data from an efficacy study on melancholic depressives (n = 40) is used for the present exploration. They received thrice or once weekly ECTs, each schedule at two energy levels - high or low energy level. FD was computed for early-, mid- and post-seizure phases of the ictal EEG. Average of the two channels was used for analysis. Results: Two-thirds of the patients (n = 25) were remitted at the end of 2 weeks. As expected, a significantly higher proportion of patients receiving thrice weekly ECT remitted than in patients receiving once weekly ECT. Smaller post-seizure FD at first ECT is the only variable which predicted remission status after six ECTs. within the once weekly ECT group too, smaller post-seizure FD was associated with remission status. Conclusions: Post-seizure FD is proposed as a novel measure of seizure adequacy and predictor of treatment response. Clinical implications: Seizure measures at first ECT may guide selection of ECT schedule to optimize ECT. Limitations: The study examined short term antidepressant effects only. The results may not be generalized to medication-resistant depressives. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This study presents the results of an experimental and analytical comparison of the flexural behavior of a high-strength concrete specimen (no conventional reinforcement) with an average plain concrete cube strength of nearly 65 MPa and containing trough shape steel fibers. Trough shape steel fibers with a volume fraction ranging from 0 to 1.5% and having a constant aspect ratio of 80 have been used in this study. Increased toughness and a more ductile stress-strain response were observed with an increase in fiber content, when the fibers were distributed over the full/partial depth of the beam cross section. Based on the tests, a robust analytical procedure has been proposed to establish the required partial depth to contain fiber-reinforced concrete (FRC) so as to obtain the flexural capacity of a member with FRC over the full depth. It is expected that this procedure will help designers in properly estimating the required partial depth of fibers in composite sections for specific structural applications. Empirical and mechanistic relations have also been proposed in this study to establish the load-deflection behavior of high-strength FRC.
Resumo:
A trajectory optimization approach is applied to the design of a sequence of open-die forging operations in order to control the transient thermal response of a large titanium alloy billet. The amount of time tire billet is soaked in furnace prior to each successive forging operation is optimized to minimize the total process time while simultaneously satisfying constraints on the maximum and minimum values of the billet's temperature distribution to avoid microstructural defects during forging. The results indicate that a "differential" heating profile is the most effective at meeting these design goals.
Resumo:
An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The use of an instrumented impact test set-up to evaluate the influence of water ingress on the impact response of a carbon–epoxy (C–E) laminated composite system containing discontinuous buffer strips (BS) has been examined. The data on the BS-free C–E sample in dry conditions are used as reference to compare with the data derived from those immersed in water. The work demonstrated the utility of an instrumented impact test set-up in characterising the response, first owing to the architectural difference due to introduction of buffer strips and then due to the presence of an additional phase in the form of water ingressed into the sample. The presence of water was found to enhance the energy absorption characteristics of the C–E system with BS insertions. It was also noticed that with an increasing number of BS layer insertions, the load–time plots displayed characteristic changes. The ductility indices (DI) were found to display a lower value for the water immersed samples compared to the dry ones.