954 resultados para Bagasse, Thermal degradation, Combustion, Kinetics, Thermogravimetry
Resumo:
Natural fibers used in this study were both pre-treated and modified residues from sugarcane bagasse. Polymer of high density polyethylene (HDPE) was employed as matrix in to composites, which were prodUced by mixing high density polyethylene with cellulose (10%) and Cell/ZrO(2)center dot nH(2)O (10%), using an extruder and hydraulic press. Tensile tests showed that the Cell/ZrO(2)center dot nH(2)O (10%)/HDPE composites present better tensile strength than cellulose (10%)/HDPE composites. Cellulose agglomerations were responsible for poor adhesion between fiber and matrix in cellulose (10%)/HDPE composites. HDPF/natural fibers composites showed also lower tensile strength in comparison to the polymer. The increase in Young`s modulus is associated to fibers reinforcement. SEM analysis showed that the cellulose fibers insertion in the matrix Caused all increase of defects, which were reduced When modified cellulose fibers were Used. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Nyvlt method Was used to determine the kinetic parameters of commercial xylitol in ethanol:water (50:50 %w/w) Solution by batch cooling crystallization. The kinetic exponents (n, g and in) and the system kinetic constant (B(N)) were determined. Model experiments were carried Out in order to verify the combined effects of saturation temperatures (40, 50 and 60 degrees C) and cooling rates (0.10, 0.25 and 0.50 degrees C/min) on these parameters. The fitting between experimental and Calculated crystal sizes has 11.30% mean deviation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work aims to evaluate the fermentability of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing using Candida guilliermondii FTI 20037 yeast. The inoculum was obtained from yeast culture in a medium containing glucose as a carbon source supplemented with rice bran extract, CaCl(2)center dot 2H(2)O and (NH(4))(2)SO(4) in 50 mL Erlenmeyer flasks, containing 20 mL of medium, initial 5.5 pH under agitation of an orbital shaker (200 rpm) at 30A degrees C for 24 h. The cellulosic hydrolysates, prior to being used as a fermentation medium, were autoclaved for 15 min at 0.5 atm and supplemented with the same nutrients employed for the inoculum, except the glucose, using the same conditions for the inoculum, but with a period of 48 h. Preliminary results showed the highest consumption of glucose (97%) for all the hydrolysates, at 28 h of fermentation. The highest concentration of ethanol (20.5 g/L) was found in the procedure of sugarcane bagasse pretreated by hydrothermal processing (195A degrees C/10 min in 20 L reactor) and delignificated with NaOH 1.0% (w/v), 100A degrees C, 1 h in 500 mL stainless steel ampoules immersed in an oil bath.
Resumo:
Different gelation times (4, 18, 24 and 48 h) were used for the preparation of silica sol-gel supports and encapsulated Candida rugosa lipase using tetraethoxysilane (TEOS) as precursor. The hydrophobic matrices and immobilized lipases produced were characterized with regard to pore volume and size by nitrogen adsorption (BJH method), weight loss upon heating (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), chemical composition (FTIR) and percentage of hydrolysis (POH%) of olive oil. These structural parameters were found to change with the gelation time, but no direct relation was found between the percentage of oil hydrolysis (POH%) and the gelation time. The best combination of high thermal stability and high POH% (99.5%) occurred for encapsulated lipase produced with 24 h gelation time. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3 Delta) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h(-1)). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 g(xylose)/g(cel) h) and xylitol production (0.059 g(xylitol)/g(cel) h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.
Resumo:
The effects of alkaline treatments of the wheat straw with sodium hydroxide were investigated. The optimal condition for extraction of hemicelluloses was found to be with 0.50 mol/l sodium hydroxide at 55C for 2 h. This resulted in the release of 17.3% of hemicellulose (% dry starting material), corresponding to the dissolution of 49.3% of the original hemicellulose. The yields were determined by gravimetric analysis and expressed as a proportion of the starting material. Chemical composition and physico-chemical properties of the samples of hemicelluloses were elucidated by a combination of sugar analyses, Fourier transform infrared (FTIR), and thermal analysis. The results showed that the treatments were very effective on the extraction of hemicelluloses from wheat straw and that the extraction intensity (expressed in terms of alkali concentration) had a great influence on the yield and chemical features of the hemicelluloses. The FTIR analysis revealed typical signal pattern for the hemicellulosic fraction in the 1,200-1,000 cm(-1) region. Bands between 1,166 and 1,000 cm(-1) are typical of xylans.
Resumo:
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.
Resumo:
Currently, several research groups and industries are studying applications for the residues from agrobusiness, other than burning them. Thinking about a better use for the sugarcane bagasse, this study aims to obtain membranes of cellulose acetate composite with oxidized lignin, both isolated from sugarcane bagasse. Thus, we obtain a product with higher commercial value, from a natural fiber, which has applications in water and effluent treatment, and further contributes to the maintenance of the environment. Macromolecular components of bagasse were separated by steam explosion pre-treatment and a basic treatment with NaOH. The pulp obtained was bleached and acetylated, and subsequently membranes of this cellulose acetate were synthesized, incorporating oxidized lignin to these membranes in order to increase the metal retention capacity of them. The acetylated material was analyzed by IR, confirming acetylation. Degree of substitution was determined by volumetry, resulting in a diacetate to the MA I condition and a triacetate to MA II condition. It was observed that for the material with a lower degree of acetylation, it has better incorporation of oxidized lignins. SEM, showed membranes with dense structure. Tests were conducted to evaluate metal retention, and the average capacity of removal was 16% Cu(+2) in steady-state experiments.
Resumo:
Chemithermomechanical (CTM) processing was used to pretreat sugarcane bagasse with the aim of increasing cell wall accessibility to hydrolytic enzymes. Yields of the pretreated samples were in the range of 75-94%. Disk refining and alkaline-CTM and alkaline/sulfite-CTM pretreatments yielded pretreated materials with 21.7, 17.8, and 15.3% of lignin, respectively. Hemicellulose content was also decreased to some extent. Fibers of the pretreated materials presented some external fibrillation, fiber curling, increased swelling, and high water retention capacity. Cellulose conversion of the alkaline-CTM- and alkaline/sulfite-CTM-pretreated samples reached 50 and 85%, respectively, after 96 h of enzymatic hydrolysis. Two samples with low initial lignin content were also evaluated after the mildest alkaline-CTM pretreatment. One sample was a partially delignified mill-processed bagasse. The other was a sugarcane hybrid selected in a breeding program. Samples with lower initial lignin content were hydrolyzed considerably faster in the first 24 h of enzymatic digestion. For example, enzymatic hydrolysis of the sample with the lowest initial lignin content (14.2%) reached 64% cellulose conversion after only 24 h of hydrolysis when compared with the 30% observed for the mill-processed bagasse containing an initial lignin content of 24.4%. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 395-401, 2011
Resumo:
Wastewater containing several dyes, including sulfur black from the dyeing process in a textile mill, was treated using a UV/H(2)O(2) process. The wastewater was characterized by a low BOD/ COD ratio, intense color and high acute toxicity to the algae species Pseudokirchneriella subcaptata. The influence of the pH and H(2)O(2) concentration on the treatment process was evaluated by a full factorial design 2(2) with three replicates of the central experiment. The removal of aromatic compounds and color was improved by an increase in the H(2)O(2) concentration and a decrease in pH. The best results were obtained at pH 5.0 and 6 g L(-1). With these conditions and 120 min of UV irradiation, the removal of the color, aromatic compounds and COD were 74.1, 55.1 and 44.8%, respectively. Under the same conditions, but using a photoreactor covered with aluminum foil, the removal of the color, aromatic compounds and COD were 92.0, 77.6 and 59.4%, respectively. Moreover, the use of aluminum foil reduced the cost of the treatment by 40.8%. These results suggest the potential application of reflective materials as a photoreactor accessory to reduce electric energy consumption during the UV/H(2)O(2) process.
Resumo:
The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 A degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).
Resumo:
Ceriporiopsis subvermispora is a white-rot fungus used in biopulping processes and seems to use the fatty acid peroxidation reactions initiated by manganese-peroxidase (MnP) to start lignin degradation. The present work shows that C. subvermispora was able to peroxidize unsaturated fatty acids during wood biotreatment under biopulping conditions. In vitro assays showed that the extent of linoleic acid peroxidation was positively correlated with the level of MnP recovered from the biotreated wood chips. Milled wood was treated in vitro by partially purified MnP and linoleic acid. UV spectroscopy and size exclusion chromatography (SEC) showed that soluble compounds similar to lignin were released from the milled wood. SEC data showed a broad elution profile compatible with low molar mass lignin fractions. MnP-treated milled wood was analyzed by thioacidolysis. The yield of thioacidolysis monomers recovered from guaiacyl and syringyl units decreased by 33% and 20% in MnP-treated milled wood, respectively. This has suggested that lignin depolymerization reactions have occurred during the MnP/linoleic acid treatment. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Experiments based on a 2(3) central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar-alcohol mill. The independent variables selected for study were temperature, varied from 112.5A degrees C to 157.5A degrees C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.
Resumo:
In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.
Resumo:
A process has been elaborated for one-step low lignin content sugarcane bagasse hemicellulose extraction using alkaline solution of hydrogen peroxide. To maximize the hemicellulose yields several extraction conditions were examined applying the 2(4) factorial design: H(2)O(2) concentration from 2 to 6% (w/v), reaction time from 4 to 16 h, temperature from 20 to 60 degrees C, and magnesium sulfate absence or presence (0.5%, w/v). This approach allowed selection of conditions for the extraction of low and high lignin content hemicellulose. At midpoint the yield of hemicellulose was 94.5% with more than 88% of lignin removed. Lignin removal is suppressed at low extraction temperatures and in the absence of magnesium sulfate. Hemicellulose in 86% yield with low lignin content (5.9%) was obtained with 6% H(2)O(2) treatment for 4 h and 20 degrees C. This hemicellulose is much lighter in color than samples obtained at the midpoint condition and was found suitable for subsequent enzymatic hydrolysis. (C) 2009 Elsevier B.V. All rights reserved.