963 resultados para Backward- bending


Relevância:

10.00% 10.00%

Publicador:

Resumo:

p-Benzoquinone and its halogen substituted derivatives are known to have differing reactivities in the triplet excited state. While bromanil catalyzes the reduction of octaethylporphyrin most efficiently among the halogenated p-benzoquinones, the reaction does not take place in presence of the unsubstituted p-benzoquinone (T. Nakano and Y. Mori, Bull. Chem. Soc. Jpn., 67, 2627 (1994)). Understanding of such differences requires a detailed knowledge of the triplet state structures, normal mode compositions and excited state dynamics. In this paper, we apply a recently presented scheme (M. Puranik, S. Umapathy, J. G. Snijders, and J. Chandrasekhar, J. Chem, Phys., 115, 6106 (2001)) that combines parameters from experiment and computation in a wave packet dynamics simulation to the triplet states of p-benzoquinone and bromanil. The absorption and resonance Raman spectra of both the molecules have been simulated. The normal mode compositions and mode specific excited state displacements have been presented and compared. Time-dependent evolution of the absorption and Raman overlaps for all the observed modes has been discussed in detail. In p-benzoquinone, the initial dynamics is along the C=C stretching and C-H bending modes whereas in bromanil nearly equal displacements are observed along all the stretching coordinates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fuzzy logic system is developed for helicopter rotor system fault isolation. Inputs to the fuzzy logic system are measurement deviations of blade bending and torsion response and vibration from a "good" undamaged helicopter rotor. The rotor system measurements used are flap and lag bending tip deflections, elastic twist deflection at the tip, and three forces and three moments at the rotor hub. The fuzzy logic system uses rules developed from an aeroelastic model of the helicopter rotor with implanted faults to isolate the fault while accounting for uncertainty in the measurements. The faults modeled include moisture absorption, loss of trim mass, damaged lag damper, damaged pitch control system, misadjusted pitch link, and damaged flap. Tests with simulated data show that the fuzzy system isolates rotor system faults with an accuracy of about 90-100%. Furthermore, the fuzzy system is robust and gives excellent results, even when some measurements are not available. A rule-based expert system based on similar rules from the aeroelastic model performs much more poorly than the fuzzy system in the presence of high levels of uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The layered chalcogenides, having structures analogous to graphite, are known to be unstable toward bending and show high propensity to form curved structures, thus eliminating dangling bonds at the edges. Since the discovery of fullerene and nanotube structures of WS2 and MoS2 by Tenne et al. [1-3], there have been attempts to prepare and characterize nanotubes of other layered dichalcogenides with structures analogous to MoS2. Nanotubes of MoS2 and WS2 were prepared by Tenne et al. by reducing the corresponding oxides to the suboxides followed by heating in an atmosphere of forming gas (5 % H-2 + 95 % N-2) and H2S at 700-900 degreesC [1-3]. Alternative methods of synthesis of MoS2 and WS2 nanotubes have since been proposed by employing the decomposition of the ammonium thiometallates or the corresponding trisulfide precursors. This alternative procedure was based on the observation that the trisulfide seems to be formed as an intermediate in the synthesis of the MoS2 and WS2 nanotubes [4]. Accordingly, the decomposition of the trisulfides of MoS2 and W in a reducing atmosphere directly yielded nanotubes of the disulfides MoS2 and WS2 [5]. In this article, we describe the synthesis, structure, and characterization of a few novel nanotubes of the disulfides of groups 4 and 5 metals. These include nanotubes of NbS2, TaS2, ZrS2, and HfS2. The study enlarges the scope of the inorganic nanotubes significantly and promises other interesting possibilities, including the synthesis of the diselenide nanotubes of these metals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO3 (Ln=La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoO3 and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thickness tapered laminates obtained by terminating a certain number of plies contain resin-rich areas called ‘resin pockets’ near ply drops, where high stress concentrations exist. Study of the effects of ply drops and resin pockets on the tensile behaviour of tapered laminates considering certain important parameters like taper angle, the number of plies dropped, and the fiber orientation is reported here. Estimation of the tensile strength of tapered laminates necessitates accurate determination of the state of stress near the ply-drop region, which is, in general, three-dimensional (3-D) in nature. Recognising the fact that full 3-D finite-element analysis becomes computationally exorbitant, special layered 3-D finite-element analysis is carried out. Laminates with ply drops along only one direction are analysed to elicit the nature of the local bending effects occurring near the ply drops. Complete 3-D Tsai–Wu criterion considering all the six stress components is used to obtain a quick and comparative assessment of the tensile strength of these laminates. High stress concentration zones are identified and the effects of number of plies dropped at a station and resin pocket geometry are illustrated. The mechanism of load transfer near ply drops and the local bending that occurs are described. Susceptibility of ply drop zones to the onset and subsequent growth of delaminations is also brought out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO(3) (Ln = La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoo(3) and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition. (C) 2001 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quartz fibre anemometers have been used (as described in subsequent papers) to survey the velocity field of turbulent free convective air flows. This paper discusses the reasons for the choice of this instrument and provides the background information for its use in this way. Some practical points concerning fibre anemometers are mentioned. The rest of the paper is a theoretical study of the response of a fibre to a turbulent flow. An approximate representation of the force on the fibre due to the velocity field and the equation for a bending beam, representing the response to this force, form the basis of a consideration of the mean and fluctuating displacement of the fibre. Emphasis is placed on the behaviour when the spectrum of the turbulence is largely in frequencies low enough for the fibre to respond effectively instantaneously (as this corresponds to the practical situation). Incomplete correlation of the turbulence along the length of the fibre is taken into account. Brief mention is made to the theory of the higher-frequency (resonant) response in the context of an experimental check on the applicability of the low-frequency theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent observations have shown that most of the warps in the disk galaxies are asymmetric. However there exists no generic mechanism to generate these asymmetries in warps. We have shown that a rich variety of possible asymmetries in the z-distribution of the spiral galaxies can naturally arise due to a dynamical wave interference between the first two bending modes i.e. bowl-shaped mode(m=0) and S-shaped warping mode(m = 1) in the galactic disk embedded in a dark matter halo. We show that the asymmetric warps are more pronounced when the dark matter content within the optical disk is lower as in early-type galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Examining theories with an extended strong interaction sector such as axigluons or flavour universal colorons, we find that the constraints obtained from the current data on $t \bar t$ production at the Tevatron are in the range of $\sim {\cal O}$ TeV and thus competitive with those obtained from the dijet data. We point out that for large axigluon/coloron masses, the limits on the coloron mass may be different than those for the axigluon even for $\cot \xi = 1$. We also compute the expected forward-backward asymmetry for the case of the axigluons which would allow it to be discriminated against the SM as also the colorons. We further find that at the LHC, the signal should be visible in the $t \bar t$ invariant mass spectrum for a wide range of axigluon and coloron masses that are still allowed. We point out how top polarisation may be used to further discriminate the axigluon and coloron case from the SM as well as from each other.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analytical expressions are found for the wavenumbers and resonance frequencies in flexible, orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders n. The Donnell-Mushtari shell theory is used to model the dynamics of the cylindrical shell. Initially, an in vacuo cylindrical isotropic shell is considered and expressions for all the wavenumbers (bending, near-field bending, longitudinal and torsional) are found. Subsequently, defining a suitable orthotropy parameter epsilon, the problem of wave propagation in an orthotropic shell is posed as a perturbation on the corresponding problem for an isotropic shell. Asymptotic expressions for the wavenumbers in the in vacuo orthotropic shell are then obtained by treating epsilon as an expansion parameter. In both cases (isotropy and orthotropy), a frequency-scaling parameter (eta) and Poisson's ratio (nu) are used to find elegant expansions in the different frequency regimes. The asymptotic expansions are compared with numerical solutions in each of the cases and the match is found to be good. The main contribution of this work lies in the extension of the existing literature by developing closed-form expressions for wavenumbers with arbitrary circumferential orders n in the case of both, isotropic and orthotropic shells. Finally, we present natural frequency expressions in finite shells (isotropic and orthotropic) for the axisymmetric mode and compare them with numerical and ANSYS results. Here also, the comparison is found to be good. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of polymer grafting on the phase behavior and elastic properties of two tail lipid bilayers have been investigated using dissipative particle dynamics simulations. For the range of polymer lengths studied, the L(c) to L(alpha) transition temperature is not significantly affected for grafting fractions, G(f) between 0.16 and 0.25. A decrease in the transition temperature is observed at a relatively high grafting fraction, G(f) = 0.36. At low temperatures, a small increase in the area per head group, a(h), at high G(f) leads to an increase in the chain tilt, inducing order in the bilayer and the solvent. The onset of the phase transition occurs with the nucleation of small patches of thinned membrane which grow and form continuous domains as the temperature increases. This region is the co-existence region between the L(beta)(thick) and the L(alpha)(thin) phases. The simulation results for the membrane area expansion as a function of the grafting density conform extremely well to the scalings predicted by self-consistent mean field theories. We find that the bending modulus shows a small decrease for short polymers (number of beads, N(p) = 10) and low G(f), where the influence of polymer is reduced when compared to the effect of the increased a(h). For longer polymers (N(p) > 15), the bending modulus increases monotonically with increase in grafted polymer. Using the results from mean field theory, we partition the contributions to the bending modulus from the membrane and the polymer and show that the dominant contribution to the increased bending modulus arises from the grafted polymer. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3631940]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe here a minimal theory of tight-binding electrons moving on the square planar Cu lattice of the hole-doped cuprates and mixed quantum mechanically with their own Cooper pairs. The superconductivity occurring at the transition temperature T(c) is the long-range, d-wave symmetry phase coherence of these Cooper pairs. Fluctuations, necessarily associated with incipient long-range superconducting order, have a generic large-distance behavior near T(c). We calculate the spectral density of electrons coupled to such Cooper-pair fluctuations and show that features observed in angle resolved photoemission spectroscopy (ARPES) experiments on different cuprates above T(c) as a function of doping and temperature emerge naturally in this description. These include ``Fermi arcs'' with temperature-dependent length and an antinodal pseudogap, which fills up linearly as the temperature increases toward the pseudogap temperature. Our results agree quantitatively with experiment. Below T(c), the effects of nonzero superfluid density and thermal fluctuations are calculated and compared successfully with some recent ARPES experiments, especially the observed bending or deviation of the superconducting gap from the canonical d-wave form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bonding a fibre reinforced polymer (FRP) composite or metallic plate to the soffit of a reinforced concrete (RC), timber or metallic beam can significantly increase its strength and other aspects of structural performance. These hybrid beams are often found to fail due to premature debonding of the plate from the original beam in a brittle manner. This has led to the development of many analytical solutions over the last two decades to quantify the interfacial shear and normal stresses between the adherends. The adherends are subjected to axial, bending and shear deformations. However, most analytical solutions have neglected the influence of shear deformation of the adherends. For the few solutions which consider this effect in an approximate manner, their applicability is limited to one or two specific load cases. This paper presents a general analytical solution for the interfacial stresses in plated beams under an arbitrary loading with the shear deformation of the adherends duly considered. The shear stress distribution is assumed to be parabolic through the depth of the adherends in predicting the interfacial shear stress and Timoshenko's beam theory is adopted in predicting interfacial normal stress to account for the shear deformation. The solution is applicable to a beam of arbitrary prismatic cross-section bonded symmetrically or asymmetrically with a thin or thick plate, both having linear elastic material properties. The effect of shear deformation is illustrated through an example beam. The influence of material and geometric parameters of the adherends and adhesive on the interfacial stress concentrations at the plate end is discussed. (C) 2011 Elsevier Ltd. All rights reserved.