937 resultados para BY-LAYER GROWTH
Resumo:
This study has concentrated on the development of an impact simulation model for use at the sub-national level. The necessity for the development of this model was demonstrated by the growth of local economic initiatives during the 1970's, and the lack of monitoring and evaluation exercise to assess their success and cost-effectiveness. The first stage of research involved the confirmation that the potential for micro-economic and spatial initiatives existed. This was done by identifying the existence of involuntary structural unemployment. The second stage examined the range of employment policy options from the macroeconomic, micro-economic and spatial perspectives, and focused on the need for evaluation of those policies. The need for spatial impact evaluation exercise in respect of other exogenous shocks, and structural changes was also recognised. The final stage involved the investigation of current techniques of evaluation and their adaptation for the purpose in hand. This led to a recognition of a gap in the armoury of techniques. The employment-dependency model has been developed to fill that gap, providing a low-budget model, capable of implementation at the small area level and generating a vast array of industrially disaggregate data, in terms of employment, employment-income, profits, value-added and gross income, related to levels of United Kingdom final demand. Thus providing scope for a variety of impact simulation exercises.
Resumo:
This study examined the effect of iron deprivation and sub-inhibitory concentrations of antifungal agents on yeast cell surface antigen recognition by antibodies from patients with Candida infections. Separation of cell wall surface proteins by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and immunological detection by immunoblotting, revealed that antigenic profiles of yeasts were profoundly influenced by the growth environment. Cells grown under iron-depleted conditions expressed several iron-regulated proteins that were recognized by antibodies from patient sera. An attempt to characterize these proteins by lectin blotting with concanavalin A revealed that some could be glycoprotein in nature. Furthermore, these proteins which were located within cell walls and on yeast surfaces, were barely or not expressed in yeasts cultivated under iron-sufficient conditions. The magnitude and heterogeneity of human antibody responses to these iron-regulated proteins were dependent on the type of Candida infection, serum antibody class and yeast strain. Hydroxamate-type siderophores were also detected in supernatants of iron depleted yeast cultures. This evidence suggests that Candida albicans expresses iron-regulated proteins/glycoproteins in vitro which may play a role in siderophore-mediated iron uptake in Candida albicans. Sequential monitoring of IgG antibodies directed against yeast surface antigens during immunization of rabbits revealed that different antigens were recognized particularly during early and later stages of immunization in iron-depleted cells compared to iron-sufficient cells. In vitro and in vivo adherence studies demonstrated that growth phase, yeast strain and growth conditions affect adhesion mechanisms. In particular, growth under iron-depletion in the presence of sub-inhibitory concentrations of polyene and azole antifungals enhanced the hydrophobicity of C.albicans. Growth conditions also influenced MICs of antifungals, notably that of ketoconazole. Sub-inhibitory concentrations of amphotericin B and fluconazole had little effect on surface antigens, whereas nystatin induced profound changes in surface antigens of yeast cells. The effects of such drug concentrations on yeast cells coupled with host defence mechanisms may have a significant affect on the course of Candida infections.
Resumo:
Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.
Resumo:
The extracellular signal-regulated kinase (ERK) pathway participates in the control of numerous cellular processes, including cell proliferation. Since its activation kinetics are critical for to its biological effects, they are tightly regulated. We report that the protein translation factor, eukaryotic translation initiation factor 3, subunit a (eIF3a), binds to SHC and Raf-1, two components of the ERK pathway. The interaction of eIF3a with Raf-1 is increased by ß-arrestin2 expression and transiently decreased by epidermal growth factor (EGF) stimulation in a concentration-dependent manner. The EGF-induced decrease in Raf-1-eIF3a association kinetically correlates with the time course of ERK activation. eIF3a interferes with Raf-1 activation and eIF3a downregulation by small interfering RNA enhances ERK activation, early gene expression, DNA synthesis, expression of neuronal differentiation markers in PC12 cells, and Ras-induced focus formation in NIH 3T3 cells. Thus, eIF3a is a negative modulator of ERK pathway activation and its biological effects.
Resumo:
An einer Studie zum Zusammenhang zwischen der Gesundheit von Unternehmern, deren Arbeitsmerkmalen und deren Erfolg nahmen 53 klein- und mittelständische Unternehmer teil. Erfasste Arbeitsmerkmale waren: Handlungs-/Entscheidungsspielraum, Arbeitsintensität, Arbeitszeit, Konkurrenzdruck und Prognose über die Auftragsentwicklung. Der Unternehmenserfolg wurde über das Mitarbeiterwachstum, die Möglichkeit des Unternehmers, von seiner Firma abwesend zu sein (Urlaubstage), und dem erlebten Unternehmenserfolg operationalisiert. Gesundheitsindikatoren waren Depression, Angst, vitale Erschöpfung, Schlafstörungen und Bluthochdruck. Im Vergleich zur Gesamtbevölkerung wiesen die Unternehmer in allen untersuchten Gesundheitsvariablen häufiger Beeinträchtigungen auf. Regressionsanalysen ergaben, dass lange Arbeitszeiten und Konkurrenzdruck mit einer verzögerten Rückstellung des systolischen Blutdrucks (SBD) in der Freizeit und Nacht einhergingen. Alle untersuchten Erfolgsmerkmale waren für die Gesundheit prädiktiv. So war Mitarbeiterwachstum negativ mit dem SBD während der Arbeit sowie Schlafstörungen assoziiert. Je mehr Unternehmenserfolg erlebt wurde, desto geringer waren die Werte für vitale Erschöpfung und Depression. Die Urlaubsdauer war negativ mit Angst und vitaler Erschöpfung korreliert. Insgesamt hatte von den Arbeitsmerkmalen nur die Dauer der Arbeitszeit einen Effekt auf die Gesundheit von Unternehmern. Daneben existieren aber offensichtlich weitere Faktoren, die mit der Unternehmergesundheit in Beziehung stehen. Dies sind neben dem Konkurrenzdruck am Markt insbesondere Indikatoren des Unternehmenserfolgs. The relationship between health and workload as well as entrepreneurial success was analyzed in 53 entrepreneurs. Workload data (decision latitude, job demand, working time, competition, market development) were determined by using structured interviews and Karasek's job content questionnaire. Firm success was operationalized by employee growth, the possibility of absence from the company (days of holiday), and perceived success. Health was measured by questionnaires for sleep disturbances, vital exhaustion, depression, and anxiety, and by 24 hour ambulatory blood pressure monitoring. Regression analyses showed that working time and strength of competition within the market were predictive for systolic blood pressure (SBP) during leisure time and night, but not during work. All variables measuring entrepreneurial success were predictive for health. Employee growth was related to decreasing SBP during work and to fewer sleep disturbances. The duration of holidays was negatively related to vital exhaustion and anxiety. Perceived company success was negatively related to depression and vital exhaustion. In conclusion, only the relationship between working time and bad health conformed to findings reported for the relationship between work and health in employees. However, there were additional indicators, especially indicators of competition and entrepreneurial success, that affected the health of entrepreneurs.
Resumo:
The fatigue behaviour in SiC-particulate-reinforced aluminium alloy composites has been briefly reviewed. The improved fatigue life reported in stress-controlled test results from the higher stiffness of the composites; therefore it is generally inferior to monolithic alloys at a constant strain level. The role of SiC particulate reinforcement has been examined for fatigue crack initiation, short-crack growth and long-crack growth. Crack initiation is observed to occur at matrix-SiC interface in cast composites and either at or near the matrix-SiC interface or at cracked SiC particles in powder metallurgy processed composites depending on particle size and morphology. The da/dN vs ΔK relationship in the composites is characterized by crack growth rates existing within a narrow range of ΔK and this is because of the lower fracture toughness and relatively high threshold values in composites compared with those in monolithic alloys. An enhanced Paris region slope attributed to the monotonic fracture contribution are reported and the extent of this contribution is found to depend on particle size. The effects of the aging condition on crack growth rates and particle size dependence of threshold values are also treated in this paper. © 1991.
Resumo:
Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.
Resumo:
When an asphalt mixture is subjected to a destructive compressive load, it experiences a sequence of three deformation stages, as follows: the (1) primary, (2) secondary, and (3) tertiary stages. Most literature research focuses on plastic deformation in the primary and secondary stages, such as prediction of the flow number, which is in fact the initiation of the tertiary stage. However, little research effort has been reported on the mechanistic modeling of the damage that occurs in the tertiary stage. The main objective of this paper is to provide a mechanistic characterizing method for the damage modeling of asphalt mixtures in the tertiary stage. The preliminary study conducted by the writers illustrates that deformation during the tertiary flow of the asphalt mixtures is principally caused by the formation and propagation of cracks, which was signaled by the increase of the phase angle in the tertiary phase. The strain caused by the growth of cracks is the viscofracture strain, which can be obtained by conducting the strain decomposition of the measured total strain in the destructive compressive test. The viscofracture strain is employed in the research reported in this paper to mechanistically characterize the time-dependent fracture (viscofracture) of asphalt mixtures in compression. By using the dissipated pseudostrain energy-balance principle, the damage density and true stress are determined and both are demonstrated to increase with load cycles in the tertiary stage. The increased true stress yields extra viscoplastic strain, which is the reason why the permanent deformation is accelerated by the occurrence of cracks. To characterize the evolution of the viscofracture in the asphalt mixtures in compression, a pseudo J-integral Paris' law in terms of damage density is proposed and the material constants in the Paris' law are determined, which can be employed to predict the fracture of asphalt mixtures in compression. © 2013 American Society of Civil Engineers.
Resumo:
The origins of population dynamics depend on interplay between abiotic and biotic factors; the relative importance of each changing across space and time. Predation is a central feature of ecological communities that removes individuals (consumption) and alters prey traits (non-consumptive). Resource quality mitigates non-consumptive predator effects by stimulating growth and reproduction. Disturbance resets predator-prey interactions by removing both. I integrate experiments, time-series analysis, and performance trials to examine the relative importance of these on the population dynamics of a snail species by studying a variety of their traits. A review of ninety-three published articles revealed that snail abundance was much less in the Everglades and similar ecosystems compared to all other freshwater ecosystems considered. Separating consumptive from non-consumptive (cues) predator effects at different phosphorous levels with an experiment determined that phosphorous stimulated, but predator cues inhibited snail growth (34% vs. 23%), activity (38% vs. 53%), and reproductive effort (99% vs. 90%) compared to controls. Cues induced taller shells and smaller openings and moved to refugia where they reduced periphyton by 8%. Consumptive predator effects were minor in comparison. In a reciprocal transplant cage experiment along a predator cue and phosphorous gradient created by a canal, snails grew 10% faster and produced 37% more eggs far from the canal (fewer cues) when fed phosphorous-enriched periphyton from near the canal. Time-series analysis at four sites and predator performance trials reveal that phosphorous-enriched regions support larger snail populations, seasonal drying removes snails at all sites, crayfish negatively affect populations in enriched regions, and molluscivorous fish consume snails in the wet season. Combining these studies reveals interplay between resources, predators, and seasonality that limit snail populations in the Everglades and lead to their low abundance compared to other freshwater ecosystems. Resource quality is emerging as the critical factor because improving resources profoundly improved growth and reproduction; seasonal drying and predation become important at times and places. This work contributes to the general understanding in ecology of the relative importance of different factors that structure populations and provides evidence that bolsters monitoring efforts to assess the Comprehensive Everglades Restoration Plan that show phosphorous enrichment is a major driver of ecosystem change.
Resumo:
The outlook for lodging franchising in the new marketplace made possible by the growth of technology is the best it has been. The CEO of the Hotel Division of Cendant, the world's largest franchisor, offers opera- tors opportunities to gain larger shares of a growing market.
Resumo:
An improved layer-by-layer vacuum filtration method was adopted for the fabrication of single-walled carbon nanotube (SWCNT) films aiming at a series of SWCNT films with controllable thickness and density. The electrical transport properties of the multilayered SWCNT films have been investigated. With the constant film density, the decrease of the layer number of the SWCNT film results in an increase of the temperature coefficient of resistance (TCR). SWCNT film with 95% metallic nanotubes has shown a lower TCR than that of the SWCNT films with a low percentage of metallic nanotubes. The effect of thermal annealing and subsequent acid (HNO3) treatment on the electrical properties of the SWCNT films has also been investigated.
Resumo:
Humans have used the land within the area currently defined as Dade County, Florida since around 11,000 B.P., but did not significantly alter the local environment until less than one hundred years ago. These recent changes greatly affected many critical ecological factors, thereby reducing the sustainability of many types of life, including humans. This study explains how land use evolved from earlier sustainable systems for satisfying human needs into the current menacing patterns. This is done by examining the environmental, technological, social, and cognitive contexts of land use through time. Changes in all these areas have followed a general trend leading to increasing intensity of land use and environmental change driven by population growth and technological innovation.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Micro cracking during service is a critical problem in polymer structures and polymer composite materials. Self-healing materials are able to repair micro cracks, thus their preventing propagation and catastrophic failure of structural components. One of the self-healing approaches presented in the literature involves the use of solvents which react with the polymer. The objective of this research is to investigate a procedure to encapsulate solvents in halloysite nanotubes to promote self-healing ability in epoxy. Healing is triggered by crack propagation through embedded nanotubes in the polymer, which then release the liquid sovent into the crack plane. Two solvents were considered in this work: dimethylsulfoxide (DMSO) and nitrobenzene. The nanotubes were coated using the layer-by-layer technique of oppositely charged polyelectrolytes: cetyltrimethylammonium bromide (CTAB) and sodium polyacrylate. Solvent encapsulation was verified by X-ray diffraction (XRD), Fourier transform infrared (FTIR), analysis thermogravimetry (TGA), adsorption and desorption of nitrogen and scanning electron microscopy (SEM). The introduction of the solvent DMSO into the cavity of the nanotubes was confirmed by the techniques employed. However, was not verified with nitrobenzene only promoted clay aggregation. The results suggest that the CTAB reacted with the halloystite to form a sealing layer on the surface of the nanotubes, thus encapsulating the solvent, while this was not verified using sodium polyacrylate.
Resumo:
Residential homegardens have environmental and social roles in the urban environment. These green spaces can potentially minimize the impacts caused by the growth of cities, being an alternative to connect fragmented areas or offer refuge to wildlife and therefore support the conservation of biodiversity. In addition, the homegardens demonstrate a leading role in increasing human well-being by promoting socialization opportunities, contact with nature, local culture as well as improvements in food security for the urban families. Nevertheless, it is still unclear what specific characteristics of homegardens can act effectively in the conservation of the biodiversity, as well as in the construction of food security and well being of the homegardeners and their families. The first chapter of this thesis analyzed the diversity of plant species (native and exotic) and assessed the contribution of different types of urban gardens (ornamental and forest gardens alike) in the presence of wildlife such as birds, monkeys and lizards. In the second chapter we evaluated the contribution of those gardens to the welfare and food security of their owners. In order to do this, 41 gardens were visited in Pium, a southern coastal town in the northeastern Brazil, which also happens to be in a periurban region undergoing rapid urban expansion and pressure from the real estate market. We surveyed the planned biodiversity and fauna associated with homegardens. The data related to food security and welfare were sampled through interviews with the person in charge of taking care of the gardens. These interviews covered issues on the supply of food from the garden and absence of chemical products, as well as aspects of the GNH indicator (Gross National Happiness). The results showed that these homegardens generally contribute little to the maintenance of native plant species (native species = 29/ total = 187). From its main features, the gardens were classified as ornamental, forest gardens and forest farms. These groups had a different effect on the presence of the animals studied and the last two contained most of the sampled native species. The diversity of plants and trees was a good predictor of the presence of birds and monkeys. Thus, the contribution of yards for the conservation of biodiversity depends on the type of garden: some even can have negative effects on conservation. These results can direct new approaches to detailed understanding of gardens and also of public policies applied to urban planning. The results of the second chapter showed that the two types of forest gardens contributed to household food security, for providing food and medicinal herbs, which mostly did not have pesticides and chemical 12 fertilizers. But the three groups of gardens are important components for the well being of their stakeholders. Gardens help promote the transmission of knowledge on agriculture, socialization, contact with nature and bring up feelings related to peace and harmony. Thus, forest gardens can be considered important means to get through public projects and policies designed to encourage biodiversity and promote food security and well-being in urban areas