913 resultados para BILINEAR PROGRAMMING
Resumo:
Maternal obesity has been shown to increase the risk for adverse reproductive health outcomes such as gestational diabetes, hypertension, and preeclampsia. Moreover, several studies have indicated that overnutrition and maternal obesity adversely program the development of offspring by predisposing them to obesity and other chronic diseases later in life. The exact molecular mechanisms leading to developmental programming are not known, but it has recently been suggested that obesity-related low-grade inflammation, gut microbiota and epigenetic gene regulation (in particularly DNA methylation) participate in the developmental programming phenomenon. The aim of this thesis was to evaluate the effect of diet, dietary counseling and probiotic intervention during pregnancy in endorsing favorable developmental programming. The study population consisted of 256 mother-child pairs participating in a prospective, double-blinded dietary counselling and probiotic intervention (Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12) NAMI (Nutrition, Allergy, Mucosal immunology and Intestinal microbiota) study. Further overweight women were recruited from maternal welfare clinics in the area of Southwest Finland and from the prenatal outpatient clinic at Turku University Hospital. Dietary counseling was aimed to modify women’s dietary intake to comply with the recommended intake for pregnant women. Specifically, counseling aimed to affect the type of fat consumed and to increase the amount of fiber in the women’s diets. Leptin concentration was used as a marker for obesity-related low-grade inflammation, antioxidant vitamin status as an efficiency marker for dietary counselling and epigenetic DNA methylation of obesity related genes as a marker for probiotics influence. Results revealed that dietary intake may modify obesity-associated low-grade inflammation as measured by serum leptin concentration. Specifically, dietary fiber intake may lower leptin concentration in women, whereas the intakes of saturated fatty acids and sucrose have an opposite effect. Neither dietary counselling nor probiotic intervention modified leptin concentration in women, but probiotics tended to increase children’s leptin concentration. Dietary counseling was an efficient tool for improving antioxidant vitamin intake in women, which was reflected in the breast milk vitamin concentration. Probiotic intervention affected DNA methylation of dozens of obesity and weight gain related genes both in women and their children. Altogether these results indicate that dietary components, dietary counseling and probiotic supplementation during pregnancy may modify the intrauterine environment towards favorable developmental programming.
Resumo:
While programming in a relational framework has much to offer over the functional style in terms of expressiveness, computing with relations is less efficient, and more semantically troublesome. In this paper we propose a novel blend of the functional and relational styles. We identify a class of "causal relations", which inherit some of the bi-directionality properties of relations, but retain the efficiency and semantic foundations of the functional style.
Resumo:
Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P=0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P=0.001), sustained into adolescence (P=0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P=0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P=0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P=0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells.
Resumo:
Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.
Resumo:
The persistence concern implemented as an aspect has been studied since the appearance of the Aspect-Oriented paradigm. Frequently, persistence is given as an example that can be aspectized, but until today no real world solution has applied that paradigm. Such solution should be able to enhance the programmer productivity and make the application less prone to errors. To test the viability of that concept, in a previous study we developed a prototype that implements Orthogonal Persistence as an aspect. This first version of the prototype was already fully functional with all Java types including arrays. In this work the results of our new research to overcome some limitations that we have identified on the data type abstraction and transparency in the prototype are presented. One of our goals was to avoid the Java standard idiom for genericity, based on casts, type tests and subtyping. Moreover, we also find the need to introduce some dynamic data type abilities. We consider that the Reflection is the solution to those issues. To achieve that, we have extended our prototype with a new static weaver that preprocesses the application source code in order to introduce changes to the normal behavior of the Java compiler with a new generated reflective code.
Resumo:
Applications are subject of a continuous evolution process with a profound impact on their underlining data model, hence requiring frequent updates in the applications' class structure and database structure as well. This twofold problem, schema evolution and instance adaptation, usually known as database evolution, is addressed in this thesis. Additionally, we address concurrency and error recovery problems with a novel meta-model and its aspect-oriented implementation. Modern object-oriented databases provide features that help programmers deal with object persistence, as well as all related problems such as database evolution, concurrency and error handling. In most systems there are transparent mechanisms to address these problems, nonetheless the database evolution problem still requires some human intervention, which consumes much of programmers' and database administrators' work effort. Earlier research works have demonstrated that aspect-oriented programming (AOP) techniques enable the development of flexible and pluggable systems. In these earlier works, the schema evolution and the instance adaptation problems were addressed as database management concerns. However, none of this research was focused on orthogonal persistent systems. We argue that AOP techniques are well suited to address these problems in orthogonal persistent systems. Regarding the concurrency and error recovery, earlier research showed that only syntactic obliviousness between the base program and aspects is possible. Our meta-model and framework follow an aspect-oriented approach focused on the object-oriented orthogonal persistent context. The proposed meta-model is characterized by its simplicity in order to achieve efficient and transparent database evolution mechanisms. Our meta-model supports multiple versions of a class structure by applying a class versioning strategy. Thus, enabling bidirectional application compatibility among versions of each class structure. That is to say, the database structure can be updated because earlier applications continue to work, as well as later applications that have only known the updated class structure. The specific characteristics of orthogonal persistent systems, as well as a metadata enrichment strategy within the application's source code, complete the inception of the meta-model and have motivated our research work. To test the feasibility of the approach, a prototype was developed. Our prototype is a framework that mediates the interaction between applications and the database, providing them with orthogonal persistence mechanisms. These mechanisms are introduced into applications as an {\it aspect} in the aspect-oriented sense. Objects do not require the extension of any super class, the implementation of an interface nor contain a particular annotation. Parametric type classes are also correctly handled by our framework. However, classes that belong to the programming environment must not be handled as versionable due to restrictions imposed by the Java Virtual Machine. Regarding concurrency support, the framework provides the applications with a multithreaded environment which supports database transactions and error recovery. The framework keeps applications oblivious to the database evolution problem, as well as persistence. Programmers can update the applications' class structure because the framework will produce a new version for it at the database metadata layer. Using our XML based pointcut/advice constructs, the framework's instance adaptation mechanism is extended, hence keeping the framework also oblivious to this problem. The potential developing gains provided by the prototype were benchmarked. In our case study, the results confirm that mechanisms' transparency has positive repercussions on the programmer's productivity, simplifying the entire evolution process at application and database levels. The meta-model itself also was benchmarked in terms of complexity and agility. Compared with other meta-models, it requires less meta-object modifications in each schema evolution step. Other types of tests were carried out in order to validate prototype and meta-model robustness. In order to perform these tests, we used an OO7 small size database due to its data model complexity. Since the developed prototype offers some features that were not observed in other known systems, performance benchmarks were not possible. However, the developed benchmark is now available to perform future performance comparisons with equivalent systems. In order to test our approach in a real world scenario, we developed a proof-of-concept application. This application was developed without any persistence mechanisms. Using our framework and minor changes applied to the application's source code, we added these mechanisms. Furthermore, we tested the application in a schema evolution scenario. This real world experience using our framework showed that applications remains oblivious to persistence and database evolution. In this case study, our framework proved to be a useful tool for programmers and database administrators. Performance issues and the single Java Virtual Machine concurrent model are the major limitations found in the framework.
Resumo:
Processors with large numbers of cores are becoming commonplace. In order to utilise the available resources in such systems, the programming paradigm has to move towards increased parallelism. However, increased parallelism does not necessarily lead to better performance. Parallel programming models have to provide not only flexible ways of defining parallel tasks, but also efficient methods to manage the created tasks. Moreover, in a general-purpose system, applications residing in the system compete for the shared resources. Thread and task scheduling in such a multiprogrammed multithreaded environment is a significant challenge. In this thesis, we introduce a new task-based parallel reduction model, called the Glasgow Parallel Reduction Machine (GPRM). Our main objective is to provide high performance while maintaining ease of programming. GPRM supports native parallelism; it provides a modular way of expressing parallel tasks and the communication patterns between them. Compiling a GPRM program results in an Intermediate Representation (IR) containing useful information about tasks, their dependencies, as well as the initial mapping information. This compile-time information helps reduce the overhead of runtime task scheduling and is key to high performance. Generally speaking, the granularity and the number of tasks are major factors in achieving high performance. These factors are even more important in the case of GPRM, as it is highly dependent on tasks, rather than threads. We use three basic benchmarks to provide a detailed comparison of GPRM with Intel OpenMP, Cilk Plus, and Threading Building Blocks (TBB) on the Intel Xeon Phi, and with GNU OpenMP on the Tilera TILEPro64. GPRM shows superior performance in almost all cases, only by controlling the number of tasks. GPRM also provides a low-overhead mechanism, called “Global Sharing”, which improves performance in multiprogramming situations. We use OpenMP, as the most popular model for shared-memory parallel programming as the main GPRM competitor for solving three well-known problems on both platforms: LU factorisation of Sparse Matrices, Image Convolution, and Linked List Processing. We focus on proposing solutions that best fit into the GPRM’s model of execution. GPRM outperforms OpenMP in all cases on the TILEPro64. On the Xeon Phi, our solution for the LU Factorisation results in notable performance improvement for sparse matrices with large numbers of small blocks. We investigate the overhead of GPRM’s task creation and distribution for very short computations using the Image Convolution benchmark. We show that this overhead can be mitigated by combining smaller tasks into larger ones. As a result, GPRM can outperform OpenMP for convolving large 2D matrices on the Xeon Phi. Finally, we demonstrate that our parallel worksharing construct provides an efficient solution for Linked List processing and performs better than OpenMP implementations on the Xeon Phi. The results are very promising, as they verify that our parallel programming framework for manycore processors is flexible and scalable, and can provide high performance without sacrificing productivity.
Resumo:
É do conhecimento geral de que, hoje em dia, a tecnologia evolui rapidamente. São criadas novas arquitecturas para resolver determinadas limitações ou problemas. Por vezes, essa evolução é pacífica e não requer necessidade de adaptação e, por outras, essa evolução pode Implicar mudanças. As linguagens de programação são, desde sempre, o principal elo de comunicação entre o programador e o computador. Novas linguagens continuam a aparecer e outras estão sempre em desenvolvimento para se adaptarem a novos conceitos e paradigmas. Isto requer um esforço extra para o programador, que tem de estar sempre atento a estas mudanças. A Programação Visual pode ser uma solução para este problema. Exprimir funções como módulos que recebem determinado Input e retomam determinado output poderá ajudar os programadores espalhados pelo mundo, através da possibilidade de lhes dar uma margem para se abstraírem de pormenores de baixo nível relacionados com uma arquitectura específica. Esta tese não só mostra como combinar as capacidades do CeII/B.E. (que tem uma arquitectura multiprocessador heterogénea) com o OpenDX (que tem um ambiente de programação visual), como também demonstra que tal pode ser feito sem grande perda de performance. ABSTRACT; lt is known that nowadays technology develops really fast. New architectures are created ln order to provide new solutions for different technology limitations and problems. Sometimes, this evolution is pacific and there is no need to adapt to new technologies, but things also may require a change every once ln a while. Programming languages have always been the communication bridge between the programmer and the computer. New ones keep coming and other ones keep improving ln order to adapt to new concepts and paradigms. This requires an extra-effort for the programmer, who always needs to be aware of these changes. Visual Programming may be a solution to this problem. Expressing functions as module boxes which receive determined Input and return determined output may help programmers across the world by giving them the possibility to abstract from specific low-level hardware issues. This thesis not only shows how the CeII/B.E. (which has a heterogeneous multi-core architecture) capabilities can be combined with OpenDX (which has a visual programming environment), but also demonstrates that lt can be done without losing much performance.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
Policy and decision makers dealing with environmental conservation and land use planning often require identifying potential sites for contributing to minimize sediment flow reaching riverbeds. This is the case of reforestation initiatives, which can have sediment flow minimization among their objectives. This paper proposes an Integer Programming (IP) formulation and a Heuristic solution method for selecting a predefined number of locations to be reforested in order to minimize sediment load at a given outlet in a watershed. Although the core structure of both methods can be applied for different sorts of flow, the formulations are targeted to minimization of sediment delivery. The proposed approaches make use of a Single Flow Direction (SFD) raster map covering the watershed in order to construct a tree structure so that the outlet cell corresponds to the root node in the tree. The results obtained with both approaches are in agreement with expert assessments of erosion levels, slopes and distances to the riverbeds, which in turn allows concluding that this approach is suitable for minimizing sediment flow. Since the results obtained with the IP formulation are the same as the ones obtained with the Heuristic approach, an optimality proof is included in the present work. Taking into consideration that the heuristic requires much less computation time, this solution method is more suitable to be applied in large sized problems.
Resumo:
A poster of this paper will be presented at the 25th International Conference on Parallel Architecture and Compilation Technology (PACT ’16), September 11-15, 2016, Haifa, Israel.
Resumo:
The SimProgramming teaching approach has the goal to help students overcome their learning difficulties in the transition from entry-level to advanced computer programming and prepare them for real-world labour environments, adopting learning strategies. It immerses learners in a businesslike learning environment, where students develop a problem-based learning activity with a specific set of tasks, one of which is filling weekly individual forms. We conducted thematic analysis of 401 weekly forms, to identify the students’ strategies for self-regulation of learning during assignment. The students are adopting different strategies in each phase of the approach. The early phases are devoted to organization and planning, later phases focus on applying theoretical knowledge and hands-on programming. Based on the results, we recommend the development of educational practices to help students conduct self-reflection of their performance during tasks.
Resumo:
Trabalho apresentado em PAEE/ALE’2016, 8th International Symposium on Project Approaches in Engineering Education (PAEE) and 14th Active Learning in Engineering Education Workshop (ALE)
Resumo:
The liver is an important metabolic and endocrine organ in the fetus but the extent to which its hormone receptor (R) sensitivity is developmentally regulated in early life is not fully established. We, therefore, examined developmental changes in mRNA abundance for the growth hormone (GH) and prolactin (PRL) receptors (R) plus insulin-like growth factor (IGF)-I and –II and their receptors. Fetal and postnatal sheep were sampled at either 80, or 140 days gestation, 1, 30 days or six months of age. The effect of maternal nutrient restriction between early to mid (i.e. 28 to 80 days gestation, the time of early liver growth) gestation on gene expression was also examined in the fetus and juvenile offspring. Gene expression for the GHR, PRLR and IGF-IR increased through gestation peaking at birth, whereas IGF-I was maximal near to term. In contrast, IGF-II mRNA decreased between mid and late gestation to increase after birth whereas IGF-IIR remained unchanged. A substantial decline in mRNA abundance for GHR, PRLR and IGF-IR then occurred up to six months. Maternal nutrient restriction reduced GHR and IGF-IIR mRNA abundance in the fetus, but caused a precocious increase in the PRLR. Gene expression for IGF-I and –II were increased in juvenile offspring born to nutrient restricted mothers. In conclusion, there are marked differences in the developmental ontogeny and nutritional programming of specific hormones and their receptors involved in hepatic growth and development in the fetus. These could contribute to changes in liver function during adult life.
Resumo:
This study investigated the developmental and nutritional programming of two important mitochondrial proteins, namely voltage dependent anion channel (VDAC) and cytochrome c in the sheep kidney, liver and lung. The effect of maternal nutrient restriction between early to mid gestation (i.e. 28 to 80 days gestation, the period of maximal placental growth) on the abundance of these proteins was also examined in fetal and juvenile offspring. Fetuses were sampled at 80 and 140 days gestation (term ~147 days), and postnatal animals at 1 and 30 days and 6 months of age. The abundance of VDAC peaked at 140 days gestation in the lung, compared with 1 day after birth in the kidney and liver, whereas cytochrome c abundance was greatest at 140 days gestation in the liver, 1 day after birth in the kidney and 6 months of age in lungs. This differential ontogeny in mitochondrial protein abundance between tissues was accompanied with very different tissue specific responses to changes in maternal food intake. In the liver, maternal nutrient restriction only increased mitochondrial protein abundance at 80 days gestation, compared with no effect in the kidney. In contrast, in the lung mitochondrial protein abundance was raised near to term, whereas VDAC abundance was decreased by 6 months of age. These findings demonstrate the tissue specific nature of mitochondrial protein development that reflects differences in functional adaptation after birth. The divergence in mitochondrial response between tissues to maternal nutrient restriction early in pregnancy further reflects these differential ontogeny’s.