963 resultados para Average compositions
Resumo:
The principal objective of Leg 187 was to locate the Indian/Pacific mantle boundary by sampling and analyzing 8- to 28-Ma seafloor basalts to the north of the Australian Antarctic Discordance (AAD). In this paper we present Sr and Nd isotopic data from basaltic glasses recovered from the 13 sites drilled during Leg 187. Our data show that the boundary region is characterized by a gradual east-west increase in 87Sr/86Sr, with a corresponding decrease in 143Nd/144Nd across a 150-km-wide zone located east and west of the 127°E Fracture Zone. The Sr-Nd isotopic composition of glasses therefore confirms the general conclusions derived by the Leg 187 shipboard scientific party in that the mantle boundary follows a west-pointing, V-shaped depth anomaly that stretches across the ocean floor from the Australian to the Antarctic continental margins. We document that two systematic trends of covariation between 87Sr/86Sr and 143Nd/144Nd can be distinguished, suggesting that the basalts sampled during Leg 187 formed through the interaction of three contrasting source components: (1) a component that lies within the broad spectrum of Indian-type mantle compositions, (2) a boundary component, and (3) a Pacific-type mantle component. The variations in elemental and isotopic compositions indicate that the boundary component represents a distinct mantle region that is associated with the boundary between the Pacific and the Indian mid-ocean-ridge basalt (MORB) sources rather than a dispersed mantle heterogeneity that was preferentially extracted in the boundary region. However, the origin of the boundary component remains an open question. The three components are not randomly intermixed. The Indian and the Pacific mantle sources both interacted with the boundary component, but they seem not to have interacted directly with each other. Large local variability in isotopic compositions of lavas from the mantle boundary region demonstrates that magma extraction processes were unable to homogenize the isotopic contrasts present in the mantle source in this region. Systematic variations in rare earth element (REE) concentrations across the depth anomaly cannot be explained solely by variations in source composition. The observed variations may be explained by an eastward increase and westward decrease in the degree of melting toward the mantle boundary region, compatible with a cooling of the Pacific mantle and a heating of the Indian mantle toward the mantle boundary.
Resumo:
Petrologic descriptions will follow a division related to both grain size and lithology like that adopted in Cape Roberts investigation (Cape Roberts Science Team 2000, hdl:10013/epic.28287.d001, and references therein). First, we describe the petrology of the sand fraction of the core. Second, we report the distribution of clasts with diameter larger than 2 millimeter (mm) and the petrology of basement clasts. Third, we focus on the occurrence and petrology of McMurdo Volcanic Group sediments, which represent the largest component in the core. The final section continues with the compositional characterization of bulk sediments by continuous X-ray fluorescence measurement (XRF scan) integrated by carbonate geochemistry and concludes with the porewater geochemistry. All of these data will contribute to infer palaeoclimatic information and to understand provenance history of detritus, changes in depositional environment, and spatial and temporal evolution of magmatism in McMurdo Ice Shelf area.
Resumo:
We report on the spatial distribution of isotopic compositions of the two planktic foraminifera species Globigerina bulloides and Neogloboquadrina pachyderma (dex.), and the faunal assemblages of planktic foraminifera in 91 surface sediment samples along the Chilean continental slope between 23°S and 44°S. Both d13C and d18O data of N. pachyderma (dex.) show little variability in the study area. North of 39°S, the isotopic values of N. pachyderma (dex.) are heavier than those of G. bulloides, whereas south of 39°S, this relation inverses. This is indicative for a change from a well-mixed, deep thermocline caused by coastal upwelling north of 39°S to well-stratified water masses in a non-upwelling environment south of 39°S. In addition, the faunal composition of planktic foraminifera marks this change by transition from an upwelling assemblage north of 39°S to a high-nutrient-non-upwelling assemblage south of 39°S, which is characterized by decreased contributions of upwelling indicators such as G. bulloides, N. pachyderma (sin.), and Globigerinita glutinata. In general, we can conclude that food and light rather than temperature are the primary control of the planktic foraminiferal assemblage between 23°S and 44°S off Chile. Our data point to higher marine productivity at upwelling centers north of 25°S and at 30-33°S. South of 39°S, significant supply of nutrients by fluvial input most likely boosts the productivity.
Resumo:
Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater d18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30'S, 100°08'E, and GeoB 10038-4, 5°56'S, 103°15'E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2-3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater d18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater ?18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling-Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.
Resumo:
The solubility of Re and Au in haplobasaltic melt has been investigated at 1673-2573 K, 0.1 MPa-2 GPa and IW-1 to +2.5, in both carbon-saturated and carbon-free systems. Results extend the existing, low pressure and temperature, dataset to more accurately predict the results of metal-silicate equilibrium at the base of a terrestrial magma ocean. Solubilities in run-product glasses were measured by laser ablation ICP-MS, which allows for the explicit assessment of contamination by metal inclusions. The Re and Au content of demonstrably contaminant-free glasses increases with temperature, and shows variation with oxygen fugacity (fO2) similar to previous results, although lower valence states for Re (1+, 2+) are suggested by the data. At 2 GPa, and Delta IW of +1.75 to +2, the metal-silicate partition coefficient for Re (DMet/Sil) is defined by the relation LogD[met/sil][Re] = 0.50(±0.022)*10**4/T(K)+3.73(±0.095) For metal-silicate equilibrium to endow Earth's mantle with the observed time-integrated chondritic Re/Os, (and hence 187Os/188Os), DMet/Sil for both elements must converge to a common value. Combined with previously measured DMet/Sil for Os, the estimated temperature at which this convergence occurs is 4500 (±900) K. At this temperature, however, the Re and Os content of the equilibrated silicate is ~100-fold too low to explain mantle abundances. In the same experiments, much lower Dmet/sil values have been determined for Au, and require the metal-silicate equilibration temperature to be <3200 K, as hotter conditions result in an excess of Au in the mantle. Thus, the large disparity in partitioning between Re or Os, and Au at core-forming temperatures argues against their mantle concentrations set solely by metal-silicate equilibrium at the base of a terrestrial magma ocean.
Resumo:
Degradation of organic matter in slightly organic-rich (1 wt% organic carbon) Neogene calcareous turbidites of the Argo Basin at Site 765 by sulfate reduction results in pore-water phosphate, ammonium, manganese, and carbonate alkalinity maxima. Pore-water calcium and magnesium decrease in the uppermost 100 meters below seafloor (mbsf) in response to the precipitation of calcian dolomite with an average composition of Ca1.15Mg0.83Fe0.02(CO3)2. Clear, euhedral dolomite rhombs range from <1 to 40 µm in diameter and occur in trace to minor amounts (<1-2 wt%) in Pleistocene to Pliocene sediment (62-210 mbsf) The abundance of dolomite increases markedly (2-10 wt%) in Miocene sediment (210-440 mbsf). The dolomite is associated with diagenetic sepiolite and palygorskite, as well as redeposited biogenic low-Mg calcite and aragonitic benthic foraminifers. Currently, dolomite is precipitating at depth within the pore spaces of the sediment, largely as a result of aragonite dissolution. The rate of aragonite dissolution, calculated from the pore-water strontium profile, is sufficient to explain the amount of dolomite observed at Site 765. A foraminiferal aragonite precursor is further supported by the carbon and oxygen isotopic compositions of the dolomite, which are fairly close to the range of isotopic compositions observed for Miocene benthic foraminifers. Dolomite precipitation is promoted by the degradation of organic matter by sulfate-reducing bacteria because the lower pore-water sulfate concentration reduces the effect of sulfate inhibition on the dolomite reaction and because the higher carbonate alkalinity increases the degree of saturation of the pore waters with dolomite. Organic matter degradation also results in the precipitation of pyrite and trace amounts of apatite (francolite), and the release of iron and manganese to the pore water by reduction of Fe and Mn oxides. Spherical, silt-sized aggregates of microcrystalline calcian rhodochrosite occur in trace to minor amounts in Lower Cretaceous sediment from 740 to 900 mbsf at Site 765. A negative carbon isotopic composition suggests that the rhodochrosite formed early in the sulfate reduction zone, but a depleted oxygen isotopic composition suggests that the rhodochrosite may have recrystallized at deeper burial depths.