994 resultados para Auto-image
Resumo:
The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.
Resumo:
In this paper, the compression of multispectral images is addressed. Such 3-D data are characterized by a high correlation across the spectral components. The efficiency of the state-of-the-art wavelet-based coder 3-D SPIHT is considered. Although the 3-D SPIHT algorithm provides the obvious way to process a multispectral image as a volumetric block and, consequently, maintain the attractive properties exhibited in 2-D (excellent performance, low complexity, and embeddedness of the bit-stream), its 3-D trees structure is shown to be not adequately suited for 3-D wavelet transformed (DWT) multispectral images. The fact that each parent has eight children in the 3-D structure considerably increases the list of insignificant sets (LIS) and the list of insignificant pixels (LIP) since the partitioning of any set produces eight subsets which will be processed similarly during the sorting pass. Thus, a significant portion from the overall bit-budget is wastedly spent to sort insignificant information. Through an investigation based on results analysis, we demonstrate that a straightforward 2-D SPIHT technique, when suitably adjusted to maintain the rate scalability and carried out in the 3-D DWT domain, overcomes this weakness. In addition, a new SPIHT-based scalable multispectral image compression algorithm is used in the initial iterations to exploit the redundancies within each group of two consecutive spectral bands. Numerical experiments on a number of multispectral images have shown that the proposed scheme provides significant improvements over related works.
Resumo:
This letter proposes an efficient extension of the set partitioning embedded block (SPECK) algorithm to lossless multispectral image coding. Such a wavelet-based coder is widely referred to in the literature, especially for lossless image coding, and is considered to be one of the most efficient techniques exhibiting very low computational complexity when compared with other state-of-the-art coders. The modification proposed in this letter is simple and provides significant improvement over the conventional SPECK. The key idea is to join each group of two consecutive wavelet-transformed spectral bands during the SPECK coding since they show high similarities with respect to insignificant sets at the same locations. Simulation results, carried out on a number of test images, demonstrate that this grouping procedure considerably saves on the bit budget for encoding the multispectral images.