985 resultados para Ataxia telangiectasia mutated
Resumo:
NPM1 mutations, the most frequent molecular alterations in acute myeloid leukemia (AML), have become important for risk stratification and treatment decisions for patients with normal karyotype AML. Rapid screening for NPM1 mutations should be available shortly after diagnosis. Several methods for detecting NPM1 mutations have been described, most of which are technically challenging and require additional laboratory equipment. We developed and validated an assay that allows specific, rapid, and simple screening for NPM1 mutations. FAST PCR spanning exons 8 to 12 of the NPM1 gene was performed on 284 diagnostic AML samples. PCR products were visualized on a 2 % agarose E-gel and verified by direct sequencing. The FAST PCR screening method showed a specificity and sensitivity of 100 %, i.e., all mutated cases were detected, and none of negative cases carried mutations. The limit of detection was at 5-10 % of mutant alleles. We conclude that the FAST PCR assay is a highly specific, rapid (less than 2 h), and sensitive screening method for the detection of NPM1 mutations. Moreover, this method is inexpensive and can easily be integrated in the routine molecular diagnostic work-up of established risk factors in AML using standard laboratory equipment.
Resumo:
The spondylarthritides (SpA), including ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, and arthritis associated with inflammatory bowel disease, cause chronic inflammation of the large peripheral and axial joints, eyes, skin, ileum, and colon. Genetic studies reveal common candidate genes for AS, PsA, and Crohn's disease, including IL23R, IL12B, STAT3, and CARD9, all of which are associated with interleukin-23 (IL-23) signaling downstream of the dectin 1 β-glucan receptor. In autoimmune-prone SKG mice with mutated ZAP-70, which attenuates T cell receptor signaling and increases the autoreactivity of T cells in the peripheral repertoire, IL-17-dependent inflammatory arthritis developed after dectin 1-mediated fungal infection. This study was undertaken to determine whether SKG mice injected with 1,3-β-glucan (curdlan) develop evidence of SpA, and the relationship of innate and adaptive autoimmunity to this process.
Resumo:
Phosphatidylinositol-specific phospholipases C (PI-PLC) are known to participate in many eukaryotic signal transduction pathways and act as virulence factors in lower organisms. Glycerophosphoryl diester phosphodiesterase (GDPD) enzymes are involved in phosphate homeostasis and phospholipid catabolism for energy production. Streptomyces antibioticus phosphatidylinositol-specific phospholipase C (SaPLC1) is a 38 kDa enzyme that displays characteristics of both enzyme superfamilies, representing an evolutionary link between these divergent enzyme classes. SaPLC1 also boasts a unique catalytic mechanism that involves a trans 1,6-cyclic inositol phosphate intermediate instead of the typical cis 1,2-cyclic inositol phosphate. The mechanism by which this occurs is still unclear. To attack this problem, we established a wide mutagenesis scan of the active site and measured activities of alanine mutants. A chemical rescue assay was developed to verify that the activity loss was due to the removal of the functional role of the mutated residue. 31P-NMR was employed in characterizing and quantifying intermediates in mutants that slowed the reaction sufficiently. We found that the H37A and H76A mutations support the hypothesis that these structurally conserved residues are also conserved in terms of their catalytic roles. H37 was found to be the general base (GB), while H76 plays the role of general acid (GA). K131 was identified as a semi-conserved key positive charge donor found at the entrance of the active site. By elucidating the SaPLC1 mechanism in relation to its active site architecture, we have increased our understanding of the structure-function relations that support catalysis in the PI-PLC/GDPD superfamily. These findings provide groundwork for in vivo studies of SaPLC1 function and its possible role in novel signaling or metabolism in Streptomyces.
Resumo:
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator gene (CFTR). Disease severity in CF varies greatly, and sibling studies strongly indicate that genes other than CFTR modify disease outcome. Syntaxin 1A (STX1A) has been reported as a negative regulator of CFTR and other ion channels. We hypothesized that STX1A variants act as a CF modifier by influencing the remaining function of mutated CFTR. We identified STX1A variants by genomic resequencing patients from the Bernese CF Patient Data Registry and applied linear mixed model analysis to establish genotype-phenotype correlations, revealing STX1A rs4363087 (c.467-38A>G) to significantly influence lung function. The same STX1A risk allele was recognized in the European CF Twin and Sibling Study (P=0.0027), demonstrating that the genotype-phenotype association of STX1A to CF disease severity is robust enough to allow replication in two independent CF populations. rs4363087 is in linkage disequilibrium to the exonic variant rs2228607 (c.204C>T). Considering that neither rs4363087 nor rs2228607 changes the amino-acid sequence of STX1A, we investigated their effects on mRNA level. We show that rs2228607 reinforces aberrant splicing of STX1A mRNA, leading to nonsense-mediated mRNA decay. In conclusion, we demonstrate the clinical relevance of STX1A variants in CF, and evidence the functional relevance of STX1A variant rs2228607 at molecular level. Our findings show that genes interacting with CFTR can modify CF disease progression.European Journal of Human Genetics advance online publication, 10 April 2013; doi:10.1038/ejhg.2013.57.
A clinical approach to arterial ischemic childhood stroke: increasing knowledge over the last decade
Resumo:
Childhood stroke is increasingly being recognized as an important burden not only for affected children and families, but also for socioeconomic reasons. A primary problem is delayed diagnosis, due to the many mimics of childhood stroke, and the variety of manifesting symptoms. The most important is hemiparesis (with/without dysphasia or facial palsy), but ataxia, seizures, and many more are also possible. Suspicion of stroke has to be ascertained by neuroimaging, gold standard being (diffusion weighted) magnetic resonance. Risk factors are multiple, but their presence might help to increase the suspicion of stroke. The most important factors are infectious/parainfectious etiologies, frequently possibly manifesting by transient focal cerebral arteriopathy (FCA). Cardiological underlying problems are the second most important. Arteriopathies can be detected in about half of the children, besides FCA and dissection and MoyaMoya disease are the most important. Hereditary coagulopathies increase the risk of stroke. There is still a controversy on best treatment in children: platelet antiaggregation and heparinization are used about equally. Thrombolysis is being discussed increasingly. Severity of symptoms at manifestation and on follow-up are not less significant in children than in young adults. About two-third of the children have significant residual neurological problems and a majority cognitive and behavior problems.
Resumo:
The genetic diversity of 115 Campylobacter coli strains, isolated from pigs of 59 geographical distant farms in Switzerland, were characterized on the basis of their DNA fingerprints and resistance to macrolides and fluoroquinolones. Sequence analysis showed that the macrolide-resistant isolates had a point mutation in the 23S ribosomal RNA (rRNA) genes (A2075G) and that the fluoroquinolone-resistant isolates had a point mutation in the gyrase gene gyrA (C257T). One fluoroquinolone-resistant strain had an additional transition mutation in the gyrB gene (A1471C). The flaA restriction fragment length polymorphism (RFLP) genotyping revealed that 57% of the isolates were genetically different. Point mutations in the 23S rRNA and gyrA genes could be found in both genetically distant and genetically related isolates. Additionally, isolates with and without point mutations were found within individual farms and on different farms. This study showed that the ciprofloxacin and erythromycin-resistant C. coli population present on the pig farms is not issued from a common ancestral clone, but individual Campylobacter strains have most likely mutated independently to acquire resistances under the selective pressure of an antibiotic.
Resumo:
The majority of mutations that cause isolated GH deficiency type II (IGHD II) affect splicing of GH-1 transcripts and produce a dominant-negative GH isoform lacking exon 3 resulting in a 17.5-kDa isoform, which further leads to disruption of the GH secretory pathway. A clinical variability in the severity of the IGHD II phenotype depending on the GH-1 gene alteration has been reported, and in vitro and transgenic animal data suggest that the onset and severity of the phenotype relates to the proportion of 17.5-kDa produced. The removal of GH in IGHD creates a positive feedback loop driving more GH expression, which may itself increase 17.5-kDa isoform productions from alternate splice sites in the mutated GH-1 allele. In this study, we aimed to test this idea by comparing the impact of stimulated expression by glucocorticoids on the production of different GH isoforms from wild-type (wt) and mutant GH-1 genes, relying on the glucocorticoid regulatory element within intron 1 in the GH-1 gene. AtT-20 cells were transfected with wt-GH or mutated GH-1 variants (5'IVS-3 + 2-bp T->C; 5'IVS-3 + 6 bp T->C; ISEm1: IVS-3 + 28 G->A) known to cause clinical IGHD II of varying severity. Cells were stimulated with 1 and 10 mum dexamethasone (DEX) for 24 h, after which the relative amounts of GH-1 splice variants were determined by semiquantitative and quantitative (TaqMan) RT-PCR. In the absence of DEX, only around 1% wt-GH-1 transcripts were the 17.5-kDa isoform, whereas the three mutant GH-1 variants produced 29, 39, and 78% of the 17.5-kDa isoform. DEX stimulated total GH-1 gene transcription from all constructs. Notably, however, DEX increased the amount of 17.5-kDa GH isoform relative to the 22- and 20-kDa isoforms produced from the mutated GH-1 variants, but not from wt-GH-1. This DEX-induced enhancement of 17.5-kDa GH isoform production, up to 100% in the most severe case, was completely blocked by the addition of RU486. In other studies, we measured cell proliferation rates, annexin V staining, and DNA fragmentation in cells transfected with the same GH-1 constructs. The results showed that that the 5'IVS-3 + 2-bp GH-1 gene mutation had a more severe impact on those measures than the splice site mutations within 5'IVS-3 + 6 bp or ISE +28, in line with the clinical severity observed with these mutations. Our findings that the proportion of 17.5-kDa produced from mutant GH-1 alleles increases with increased drive for gene expression may help to explain the variable onset progression, and severity observed in IGHD II.
Resumo:
Chronic pancreatitis is a common inflammatory disease of the pancreas. Mutations in the genes encoding cationic trypsinogen (PRSS1) and the pancreatic secretory trypsin inhibitor (SPINK1) are associated with chronic pancreatitis. Because increased proteolytic activity owing to mutated PRSS1 enhances the risk for chronic pancreatitis, mutations in the gene encoding anionic trypsinogen (PRSS2) may also predispose to disease. Here we analyzed PRSS2 in individuals with chronic pancreatitis and controls and found, to our surprise, that a variant of codon 191 (G191R) is overrepresented in control subjects: G191R was present in 220/6,459 (3.4%) controls but in only 32/2,466 (1.3%) affected individuals (odds ratio 0.37; P = 1.1 x 10(-8)). Upon activation by enterokinase or trypsin, purified recombinant G191R protein showed a complete loss of trypsin activity owing to the introduction of a new tryptic cleavage site that renders the enzyme hypersensitive to autocatalytic proteolysis. In conclusion, the G191R variant of PRSS2 mitigates intrapancreatic trypsin activity and thereby protects against chronic pancreatitis.
Resumo:
We have identified a novel cytosine/thymidine polymorphism of the human steroidogenic acute regulatory (StAR) gene promoter located 3 bp downstream of the steroidogenic factor-1 (SF-1)-binding site and 9 bp upstream of the TATA box (ATTTAAG). Carriers of this mutation have a high prevalence of primary aldosteronism. In transfection experiments, basal StAR promoter activity was unaltered by the mutation in murine Y-1 cells and human H295R cells. In Y-1 cells, forskolin (25 microM, 6 h) significantly increased wild-type promoter activity to 230+/-33% (P<0.05, n=4). In contrast, forskolin increased mutated promoter activity only to 150+/-27%, with a significant 35% reduction compared to wild type (P<0.05, n=3). In H295R cells, angiotensin II (AngII; 10 nM) increased wild-type StAR promoter activity to 265+/-22% (P<0.01, n=3), while mutated StAR promoter activity in response to AngII only reached 180+/-29% of controls (P< 0.01, n=3). Gel mobility shift assays show the formation of two additional complexes with the mutated promoter: one with the transcription repressor DAX-1 and another with a yet unidentified factor, which strongly binds the SF-1 response element. Thus, this novel mutation in the human StAR promoter is critically involved in the regulation of StAR gene expression and is associated with reduced promoter activity, a finding relevant for adrenal steroid response to physiological stimulators.
Resumo:
We report on a family with a 12-year-old boy who suffered from a maternally inherited syndrome characterized by a combination of sensorineural hearing loss, myoclonus epilepsy, ataxia, severe psychomotor retardation, short stature, and diabetes mellitus. First, he showed a muscular hypotonia with hearing loss; later, he developed a myoclonus epilepsy, growth failure, and severe psychomotor retardation. At the age of 10 years, he developed diabetes mellitus. After initiation of combined ubiquinone and vitamin C treatment, we observed a progression in psychomotor development. Lactate and pyruvate levels in blood and cerebrospinal fluid were normal. No ragged red fibers or ultrastructural abnormalities were seen in a skeletal muscle biopsy. Biochemical assays of respiratory chain complex activities revealed decreased activity of complexes I and IV. By sequence analysis of mitochondrial DNA encoding transfer ribonucleic acids (RNAs), a homoplasmic T to C substitution at nucleotide position 7512 was found affecting a highly conserved base pair in the tRNA(ser(UCN)) acceptor stem. Asymptomatic family members of the maternal line were heteroplasmic for the mutation in blood samples. Analysis of mitochondrial DNA in patients with hearing loss and myoclonus epilepsy is recommended, even in the absence of laboratory findings. Therapeutically, ubiquinone and antioxidants can be beneficial.
Resumo:
Activation-induced cytidine deaminase (AID) is indispensable for immunoglobulin maturation by somatic hypermutations and class switch recombination and is supposed to deaminate cytidines in DNA, while its homolog APOBEC-1 edits apolipoprotein (apo) B mRNA by cytidine deamination. We studied the editing activity of APOBEC-1 and AID in yeast using the selectable marker Gal4 linked to its specific inhibitor protein Gal80 via an apo B cassette (Gal4-C) or via the variable region of a mouse immunoglobulin heavy chain gene (Gal4-VH). Expression of APOBEC-1 induced C to U editing in up to 15% of the Gal4-C transcripts, while AID was inactive in this reaction even in the presence of the APOBEC-1 complementation factor. After expression of APOBEC-1 as well as AID approximately 10(-3) of yeast cells survived low stringency selection and expressed beta-galactosidase. Neither AID nor APOBEC-1 mutated the VH sequence of Gal4-VH, and consequently the yeast colonies did not escape high stringent selection. AID, however, induced frequent plasmid recombinations that were only rarely observed with APOBEC-1. In conclusion, AID cannot substitute APOBEC-1 to edit the apo B mRNA, and the expression of AID in yeast is not sufficient for the generation of point mutations in a highly transcribed Gal4-VH sequence. Cofactors for AID induced somatic hypermutations of immunoglobulin variable regions, that are present in B cells and a variety of non-B cells, appear to be missing in yeast. In contrast to APOBEC-1, AID alone does not exhibit an intrinsic specificity for its target sequences.
Resumo:
Numerous cases of acute-onset progressive ataxia, hindlimb paresis and paralysis of unknown aetiology occurred during 1993 to 2003 in cheetahs (Acinonyx jubatus) within the European Endangered Species Programme (eep). This study describes the immunohistochemical investigation of a possible viral aetiology of the "cheetah myelopathy". Antibodies to feline herpesvirus type 1, canine distemper virus, canine parvovirus and Borna disease virus were applied to formalin-fixed and paraffin-embedded brain and spinal cord sections from 25 affected cheetahs aged between three-and-a-half months and 13 years. Using the avidin-biotin complex technique, none of the antibodies gave positive immunosignals in either the brain or the spinal cord tissue.
Resumo:
Glanzmann's thrombasthenia (GT) arises from a qualitative or quantitative defect in the GPIIb-IIIa complex (integrin alphaIIbbeta3), the mediator of platelet aggregation. We describe a patient in whom clinical and laboratory findings typical of type I GT were found together with a second pathology involving neurological and other complications symptomatic of tuberous sclerosis. Analysis of platelet proteins by Western blotting revealed trace amounts of normally migrating GPIIb and equally small amounts of GPIIIa of slightly slower than normal migration. Flow cytometry confirmed a much decreased binding to platelets of monoclonal antibodies to GPIIb, GPIIIa or GPIIb-IIIa, and an antibody to the alphav subunit also showed decreased binding. Nonradioactive PCR single-strand conformation polymorphism analysis followed by direct sequencing of PCR-amplified DNA fragments showed a homozygous point mutation (T to C) at nucleotide 1722 of GPIIIa cDNA and which led to a Cys542-->Arg substitution in the GPIIIa protein. The mutation gave rise to a HinP1 I restriction site in exon 11 of the GPIIIa gene and allele-specific restriction enzyme analysis of family members confirmed that a single mutated allele was inherited from each parent. This amino acid substitution presumably changes the capacity for disulphide bond formation within the cysteine-rich core region of GPIIIa and its study will provide new information on GPIIb-IIIa and alphavbeta3 structure and biosynthesis.
Resumo:
Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) have been identified as ligands with different effector functions of the vascular assembly and maturation-mediating receptor tyrosine kinase Tie-2. To understand the molecular interactions of the angiopoietins with their receptor, we have studied the binding of Ang-1 and Ang-2 to the Tie-2 receptor. Enzyme-linked immunosorbent assay-based competition assays and co-immunoprecipitation experiments analyzing the binding of Ang-1 and Ang-2 to truncation mutants of the extracellular domain of Tie-2 showed that the first Ig-like loop of Tie-2 in combination with the epidermal growth factor (EGF)-like repeats (amino acids 1-360) is required for angiopoietin binding. The first Ig-like domain or the EGF-like repeats alone are not capable of binding Ang-1 and Ang-2. Concomitantly, we made the surprising finding that Tie-2 exon-2 knockout mice do express a mutated Tie-2 protein that lacks 104 amino acids of the first Ig-like domain. This mutant Tie-2 receptor is functionally inactive as shown by the lack of ligand binding and receptor phosphorylation. Collectively, the data show that the first 104 amino acids of the Tie-2 receptor are essential but not sufficient for angiopoietin binding. Conversely, the first 360 amino acids (Ig-like domain plus EGF-like repeats) of the Tie-2 receptor are necessary and sufficient to bind both Ang-1 and Ang-2, which suggests that differential receptor binding is not likely to be responsible for the different functions of Ang-1 and Ang-2.
Resumo:
Gap junctions are clustered channels between contacting cells through which direct intercellular communication via diffusion of ions and metabolites can occur. Two hemichannels, each built up of six connexin protein subunits in the plasma membrane of adjacent cells, can dock to each other to form conduits between cells. We have recently screened mouse and human genomic data bases and have found 19 connexin (Cx) genes in the mouse genome and 20 connexin genes in the human genome. One mouse connexin gene and two human connexin genes do not appear to have orthologs in the other genome. With three exceptions, the characterized connexin genes comprise two exons whereby the complete reading frame is located on the second exon. Targeted ablation of eleven mouse connexin genes revealed basic insights into the functional diversity of the connexin gene family. In addition, the phenotypes of human genetic disorders caused by mutated connexin genes further complement our understanding of connexin functions in the human organism. In this review we compare currently identified connexin genes in both the mouse and human genome and discuss the functions of gap junctions deduced from targeted mouse mutants and human genetic disorders.