901 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology, few assumptions can be made about the data and complex, spatially varying interactions can be recovered from collected field data. In this study, we compare Bayesian network modelling approaches accounting for latent effects to reveal species dynamics for 7 geographically and temporally varied areas within the North Sea. We also apply structure learning techniques to identify functional relationships such as prey–predator between trophic groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden variable can model unmeasured group of species. The general hidden variable appears to capture changes in the variance of different groups of species biomass. Models that include both general and specific hidden variables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmeasured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the models' features and across the different spatial areas thus proposing a model that allows for spatial autocorrelation and two hidden variables. Our proposed model was able to produce novel insights on this ecosystem's dynamics and ecological interactions mainly because we account for the heterogeneous nature of the driving factors within each area and their changes over time. Our findings demonstrate that accounting for additional sources of variation, by combining structure learning from data and experts' knowledge in the model architecture, has the potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to discover meaningful functional networks that were spatially and temporally differentiated with the particular mechanisms varying from trophic associations through interactions with climate and commercial fisheries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the theory of planned behaviour (TPB) has been applied successfully in the area of food choice, it has been criticized for its pure utilitarian approach to the factors determining behaviour. Despite the increase in predictive power of the model with added components such as affective attitude and moral and ethical concerns, in most studies the elicitation process still only addresses people's utilitarian beliefs about the behaviour with little attention paid to other aspects. This study compares the traditional method of elicitation of advantages and disadvantages with two other methods (word association and open-ended) in the elicitations of beliefs, attitudes and moral concerns in relation to the consumption of organic foods. Results show the traditional method to be best for eliciting cognitive beliefs, open-ended emotion task for eliciting emotional beliefs and open-ended beliefs task best for moral concerns. The advantages and disadvantages of each method are discussed.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The growing importance of understanding past abrupt climate variability at a regional and global scale has led to the realisation that independent chronologies of past environmental change need to be compared between various archives. This has in turn led to attempts at significant improvements in the required precision at which records can be dated. Radiocarbon dating is still the most prominent method for dating organic material from terrestrial and marine archives, and as such many of the recent developments in improving precision have been aimed at this technique. These include: (1) selection of the most suitable datable fractions within a record, (2) the development of better calibration curves, and (3) more precise age modelling techniques. While much attention has been focussed oil the first two items, testing the possibilities of the relatively new age modelling approaches has not received much attention. Here, we test the potential for methods designed to significantly improve precision in radiocarbon-based age models, wiggle match dating and various forms of Bayesian analyses. We demonstrate that while all of the methods can perform very well, in some scenarios, caution must be taken when applying them. It appears that an integrated approach is required in real life dating situations where more than one model is applied, with strict error calculation, and with the integration of radiocarbon data with sedimentological analyses of site formation processes. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polypropylene (PP), a semi-crystalline material, is typically solid phase thermoformed at temperatures associated with crystalline melting, generally in the 150° to 160°Celsius range. In this very narrow thermoforming window the mechanical properties of the material rapidly decline with increasing temperature and these large changes in properties make Polypropylene one of the more difficult materials to process by thermoforming. Measurement of the deformation behaviour of a material under processing conditions is particularly important for accurate numerical modelling of thermoforming processes. This paper presents the findings of a study into the physical behaviour of industrial thermoforming grades of Polypropylene. Practical tests were performed using custom built materials testing machines and thermoforming equipment at Queen′s University Belfast. Numerical simulations of these processes were constructed to replicate thermoforming conditions using industry standard Finite Element Analysis software, namely ABAQUS and custom built user material model subroutines. Several variant constitutive models were used to represent the behaviour of the Polypropylene materials during processing. This included a range of phenomenological, rheological and blended constitutive models. The paper discusses approaches to modelling industrial plug-assisted thermoforming operations using Finite Element Analysis techniques and the range of material models constructed and investigated. It directly compares practical results to numerical predictions. The paper culminates discussing the learning points from using Finite Element Methods to simulate the plug-assisted thermoforming of Polypropylene, which presents complex contact, thermal, friction and material modelling challenges. The paper makes recommendations as to the relative importance of these inputs in general terms with regard to correlating to experimentally gathered data. The paper also presents recommendations as to the approaches to be taken to secure simulation predictions of improved accuracy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The majority of reported learning methods for Takagi-Sugeno-Kang fuzzy neural models to date mainly focus on the improvement of their accuracy. However, one of the key design requirements in building an interpretable fuzzy model is that each obtained rule consequent must match well with the system local behaviour when all the rules are aggregated to produce the overall system output. This is one of the distinctive characteristics from black-box models such as neural networks. Therefore, how to find a desirable set of fuzzy partitions and, hence, to identify the corresponding consequent models which can be directly explained in terms of system behaviour presents a critical step in fuzzy neural modelling. In this paper, a new learning approach considering both nonlinear parameters in the rule premises and linear parameters in the rule consequents is proposed. Unlike the conventional two-stage optimization procedure widely practised in the field where the two sets of parameters are optimized separately, the consequent parameters are transformed into a dependent set on the premise parameters, thereby enabling the introduction of a new integrated gradient descent learning approach. A new Jacobian matrix is thus proposed and efficiently computed to achieve a more accurate approximation of the cost function by using the second-order Levenberg-Marquardt optimization method. Several other interpretability issues about the fuzzy neural model are also discussed and integrated into this new learning approach. Numerical examples are presented to illustrate the resultant structure of the fuzzy neural models and the effectiveness of the proposed new algorithm, and compared with the results from some well-known methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.