982 resultados para Archaeological Site
Resumo:
This paper reports an approach by which laboratory based testing and numerical modelling can be combined to predict the long term performance of a range of concretes exposed to marine environments. Firstly, a critical review of the test methods for assessing the chloride penetration resistance of concrete is given. The repeatability of the different test results is also included. In addition to the test methods, a numerical simulation model is used to explore the test data further to obtain long-term chloride ingress trends. The combined use of testing and modelling is validated with the help of long-term chloride ingress data from a North Sea exposure site. In summary, the paper outlines a methodology for determining the long term performance of concrete in marine environments.
Resumo:
Burial grounds are commonly surveyed and searched by both police/humanitarian search teams and archaeologists.
One aspect of an efficient search is to establish areas free of recent internments to allow the concentration of assets in suspect
terrain. While 100% surety in locating remains can never be achieved, the deployment of a red, amber green (RAG) system for
assessment has proven invaluable to our surveys. The RAG system is based on a desktop study (including burial ground
records), visual inspection (mounding, collapses) and use of geophysics (in this case, ground penetrating radar or GPR) for a
multi-proxy assessment that provides search authorities an assessment of the state of inhumations and a level of legal backup
for decisions they make on excavation or not (‘exit strategy’). The system is flexible and will be built upon as research
continues.
Resumo:
The construction industry in Northern Ireland is one of the major contributors of construction waste to landfill each year. The aim of this research paper is to identify the core on-site management causes of material waste on construction sites in Northern Ireland and to illustrate various methods of prevention which can be adopted. The research begins with a detailed literature review and is complemented with the conduction of semi-structured interviews with 6 professionals who are experienced and active within the Northern Ireland construction industry. Following on from the literature review and interviews analysis, a questionnaire survey is developed to obtain further information in relation to the subject area. The questionnaire is based on the key findings of the previous stages to direct the research towards the most influential factors. The analysis of the survey responses reveals that the core causes of waste generation include a rushed program, poor handling and on-site damage of materials, while the principal methods of prevention emerge as the adequate storage, the reuse of material on-site and efficient material ordering. Furthermore, the role of the professional background in the shaping of perceptions relevant to waste management is also investigated and significant differences are identified. The findings of this research are beneficial for the industry as they enhance the understanding of construction waste generation causes and highlight the practices required to reduce waste on-site in the context of sustainable development.
Resumo:
This paper presents an electrochemical instrumentation system capable of real-time in situ detection of heavy metals. A practical approach to introduce acidity compensation against changes in amplitude of the peak currents is also presented. The compensated amplitudes can then be used to predict the concentration level of heavy metals. The system uses differential pulse anodic stripping voltammetry, which is a precise and sensitive analytical method with excellent limits of detection. The instrument is capable of detecting lead, cadmium, zinc, nickel and copper with good sensitivity and precision. The system avoids expensive and time-consuming procedures and may be used in a variety of situations to help environmental assessment and control.
Resumo:
This paper presents a portable electrochemical instrument capable of real-time in situ detection and automatic identification of heavy metals. The instrument is equipped with an embedded Geographical Position System and is capable of storing the geographical position of the sample under test. Software has been developed to combine pollutant results with geographical position, in order to produce a cartographical presentation of the pollution of an area. The electrochemical instrument provides the facilities found in a traditional lab based instrument in a portable design for on-site measurements. The instrument is capable of detecting lead, cadmium, zinc, nickel, mercury, and copper with good sensitivity and precision. The system is reliable, easy to use, safe, and it may be used in a variety of situations to help environmental assessment and control.