926 resultados para Approximate Bayesian computation
Resumo:
En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.
Resumo:
The paper resumes the results obtained applying various implementations of the direct boundary element method (BEM) to the solution of the Laplace Equation governing the potential flow problem during everyday service manoeuvres of high-speed trains. In particular the results of train passing events at three different speed combinations are presented. Some recommendations are given in order to reduce calculation times which as is demonstrated can be cut down to not exceed reasonable limits even when using nowadays office PCs. Thus the method is shown to be a very valuable tool for the design engineer.
Resumo:
Bruynooghe described a framework for the top-down abstract interpretation of logic programs. In this framework, abstract interpretation is carried out by constructing an abstract and-or tree in a top-down fashion for a given query and program. Such an abstract interpreter requires fixpoint computation for programs which contain recursive predicates. This paper presents in detail a fixpoint algorithm that has been developed for this purpose and the motivation behind it. We start off by describing a simple-minded algorithm. After pointing out its shortcomings, we present a series of refinements to this algorithm, until we reach the final version. The aim is to give an intuitive grasp and provide justification for the relative complexity of the final algorithm. We also present an informal proof of correctness of the algorithm and some results obtained from an implementation.
Resumo:
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson’s patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson’s disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.
Resumo:
After the experience gained during the past years it seems clear that nonlinear analysis of bridges are very important to compute ductility demands and to localize potential hinges. This is specially true for irregular bridges in which it is not clear weather or not it is possible to use a linear computation followed by a correction using a behaviour factor. To simplify the numerical effort several approximate methods have been proposed. Among them, the so-called Dynamic Plastic Hinge Method in which an evolutionary shape function is used to reduce the structure to a single degree of freedom system seems to mantein a good balance between accuracy and simplicity. This paper presents results obtained in a parametric study conducted under the auspicies of PREC-8 european research program.
Resumo:
It is well known that the evaluation of the influence matrices in the boundary-element method requires the computation of singular integrals. Quadrature formulae exist which are especially tailored to the specific nature of the singularity, i.e. log(*- x0)9 Ijx- JC0), etc. Clearly the nodes and weights of these formulae vary with the location Xo of the singular point. A drawback of this approach is that a given problem usually includes different types of singularities, and therefore a general-purpose code would have to include many alternative formulae to cater for all possible cases. Recently, several authors1"3 have suggested a type independent alternative technique based on the combination of standard Gaussian rules with non-linear co-ordinate transformations. The transformation approach is particularly appealing in connection with the p.adaptive version, where the location of the collocation points varies at each step of the refinement process. The purpose of this paper is to analyse the technique in eference 3. We show that this technique is asymptotically correct as the number of Gauss points increases. However, the method possesses a 'hidden' source of error that is analysed and can easily be removed.
Resumo:
Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms.
Resumo:
We discuss several methods, based on coordinate transformations, for the evaluation of singular and quasisingular integrals in the direct Boundary Element Method. An intrinsec error of some of these methods is detected. Two new transformations are suggested which improve on those currently available.
Resumo:
We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.
Resumo:
In recent future, wireless sensor networks (WSNs) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of WSNs facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers (DCs). The high economical and environmental impact of the energy consumption in DCs requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed. In this context, this paper shows the following on-going research lines and obtained results. In the field of WSNs: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of DCs: energy-optimal workload assignment policies in heterogeneous DCs, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.
Resumo:
We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro.
Resumo:
In recent future, wireless sensor networks ({WSNs}) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of {WSNs} facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers ({DCs}). The high economical and environmental impact of the energy consumption in {DCs} requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed. In this context, this paper shows the following on-going research lines and obtained results. In the field of {WSNs}: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of {DCs}: energy-optimal workload assignment policies in heterogeneous {DCs}, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.
Resumo:
In this paper, an innovative approach to perform distributed Bayesian inference using a multi-agent architecture is presented. The final goal is dealing with uncertainty in network diagnosis, but the solution can be of applied in other fields. The validation testbed has been a P2P streaming video service. An assessment of the work is presented, in order to show its advantages when it is compared with traditional manual processes and other previous systems.