906 resultados para Antiparasitic Agents
Resumo:
The thiazolides represent a novel class of anti-infective drugs, with the nitrothiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] (NTZ) as the parent compound. NTZ exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. In vivo, NTZ is rapidly deacetylated to tizoxanide (TIZ), which exhibits similar activities. We have here comparatively investigated the in vitro effects of NTZ, TIZ, a number of other modified thiazolides, and metronidazole (MTZ) on Giardia lamblia trophozoites grown under axenic culture conditions and in coculture with the human cancer colon cell line Caco2. The modifications of the thiazolides included, on one hand, the replacement of the nitro group on the thiazole ring with a bromide, and, on the other hand, the differential positioning of methyl groups on the benzene ring. Of seven compounds with a bromo instead of a nitro group, only one, RM4820, showed moderate inhibition of Giardia proliferation in axenic culture, but not in coculture with Caco2 cells, with a 50% inhibitory concentration (IC50) of 18.8 microM; in comparison, NTZ and tizoxanide had IC50s of 2.4 microM, and MTZ had an IC50 of 7.8 microM. Moreover, the methylation or carboxylation of the benzene ring at position 3 resulted in a significant decrease of activity, and methylation at position 5 completely abrogated the antiparasitic effect of the nitrothiazole compound. Trophozoites treated with NTZ showed distinct lesions on the ventral disk as soon as 2 to 3 h after treatment, whereas treatment with metronidazole resulted in severe damage to the dorsal surface membrane at later time points.
Resumo:
Biological agents-like cytokines, monoclonal antibodies and fusion proteins are widely used in anti-inflammatory and tumour therapy. They are highly efficient in certain diseases, but can cause a great variety of adverse side-effects. Based on the peculiar features of biological agents a new classification of these adverse side-effects of biological agents is proposed - related but clearly distinct from the classification of side-effects observed with chemicals and drugs. This classification differentiates five distinct types, namely clinical reactions because of high cytokine levels (type alpha), hypersensitivity because of an immune reaction against the biological agent (beta), immune or cytokine imbalance syndromes (gamma), symptoms because of cross-reactivity (delta) and symptoms not directly affecting the immune system (epsilon). This classification could help to better deal with the clinical features of these side-effects, to identify possible individual and general risk factors and to direct research in this novel area of medicine.
Resumo:
AIM: To evaluate the haemostatic efficacy and the histologic tissue responses after the application of different haemostatic agents used in periradicular surgery. METHODOLOGY: The study was conducted in the calvarium of six rabbits. Standardized bone defects (diameter 4 mm) were trephined, and different haemostatic agents were applied and compared with control defects: bone wax (left for 10 min), Stasis (ferric sulphate, left for 5 s), Expasyl (aluminium chloride, left for 2 min and left permanently in situ), and a combination of Expasyl (2 min) and Stasis (5 s). The sites were photographed before the application and after the removal of the haemostatic agents. Three independent examiners judged the initial and final bleeding (on the photographs) using a bleeding score for each site and treatment. The results were compared using Wilcoxon's signed rank test. For the histologic analysis, three animals were killed after 3 weeks and three animals after 12 weeks. Transverse, nondecalcified sections were stained with combined basic fuchsin and toluidine blue for descriptive histology. RESULTS: The most efficient haemorrhage control was provided by Expasyl in combination with Stasis and by Expasyl alone, whereas bone wax had the weakest bleeding reduction effect. The histologic analysis after 3 weeks demonstrated an inflammatory and foreign body tissue response towards all haemostatic agents. At 12 weeks, this tissue response was less pronounced but still present in sites treated with bone wax or Expasyl. In general, the inflammatory tissue reactions were limited to the bone defects, and never extended into the surrounding tissues. CONCLUSIONS: Expasyl alone or in combination with Stasis appeared to be the most efficient of tested agents to control the bleeding within the bony defects created in a rabbit calvarium model.
Resumo:
Numerous cases of acute-onset progressive ataxia, hindlimb paresis and paralysis of unknown aetiology occurred during 1993 to 2003 in cheetahs (Acinonyx jubatus) within the European Endangered Species Programme (eep). This study describes the immunohistochemical investigation of a possible viral aetiology of the "cheetah myelopathy". Antibodies to feline herpesvirus type 1, canine distemper virus, canine parvovirus and Borna disease virus were applied to formalin-fixed and paraffin-embedded brain and spinal cord sections from 25 affected cheetahs aged between three-and-a-half months and 13 years. Using the avidin-biotin complex technique, none of the antibodies gave positive immunosignals in either the brain or the spinal cord tissue.
Resumo:
Platelets have important roles in atherosclerosis and thrombosis and their inhibition reduces the risk of these disorders. There is still a need for platelet inhibitors affecting pathways that reduce thrombosis and atherosclerosis while leaving normal hemostasis relatively unaffected, thus reducing possible bleeding complications. Although combinations show progress in achieving these goals none of the present inhibitors completely fulfill these requirements. Collagen receptors offer attractive possibilities as alternative targets at early stages in platelet activation. Three major collagen receptors are assessed in this review; the alpha2beta1 integrin, responsible primarily for platelet adhesion to collagen; GPVI, the major signaling receptor for collagen; and GPIb-V-IX, which is indirectly a collagen receptor via von Willebrand factor. Several thrombosis models and experimental approaches suggest that all three are interesting targets and merit further investigation.