996 resultados para Anomalinoides acuta, d13C
Resumo:
Detailed stable isotopic and calcium carbonate records (with a sampling resolution of 3000 yr.) from the middle Miocene section of hydraulic piston corer (HPC) Hole 574A provide a sequence that records the major shift in the oxygen isotopic composition of the world's oceans that occurred at about 14 Ma. The data suggest that this transition was rapid and spans about 30,000 yr. of sediment deposition. In intervals before and after the shift, the mean d18O values are characterized by a constant mean with a high degree of variability. The degree of variability in both the d18O and d13C records is comparable to that observed for the Pliocene and earliest Pleistocene and does not show a significant change before or after the major shift in the d18O record. Whereas the oxygen isotopic record is characterized by relatively stable mean values before and after the middle Miocene event, the d13C record shows a number of significant offsets in the mean value separated by intervals of high-frequency variations. Time and frequency domain analysis of all records from Hole 574A indicate that the frequency components shown to be related to orbital changes in the Pleistocene record are also present in the middle Miocene. The high variability observed in the Site 574 isotopic records places important constraints on models describing the role of formation of the Antarctic ice sheet during the middle Miocene climatic transitions. Thus, HPC Hole 574A provides a valuable sequence for detailed study of climatic variability during an important time in the Earth's history, although we cannot provide a definitive explanation of the major oxygen isotopic event of the middle Miocene.
Resumo:
Studies of interstitial waters obtained from DSDP Leg 64 drill sites in the Gulf of California have revealed information both on early diagenetic processes in the sediments resulting from the breakdown of organic matter and on hydrothermal interactions between sediments and hot doleritic sill intrusions into the sediments. In all the sites drilled sulfate reduction occurred as a result of rapid sediment accumulation rates and of relatively high organic carbon contents; in most sites methane production occurred after sulfate depletion. Associated with this methane production are high values of alkalinity and high concentrations of dissolved ammonia, which causes ion exchange processes with the solid phases leading to intermediate maxima in Mg++, K+, Rb+, and Sr++(?). Though this phenomenon is common in Leg 64 drill sites, these concentration reversals had been noticed previously only in Site 262 (Timor Trough) and Site 440 (Japan Trench). Penetrating, hot dolerite sills have led to substantial hydrothermal alteration in sediments at sites drilled in the Guaymas Basin. Site 477 is an active hydrothermal system in which the pore-water chemistry typically shows depletions in sulfate and magnesium and large increases in lithium, potassium, rubidium, calcium, strontium, and chloride. Strontium isotope data also indicate large contributions of volcanic matter and basalt to the pore-water strontium concentrations. At Sites 478 and 481 dolerite sill intrusions have cooled to ambient temperatures but interstitial water concentrations of Li+, Rb+, Sr++ , and Cl- show the gradual decay of a hydrothermal signal that must have been similar to the interstitial water chemistry at Site 477 at the time of sill intrusion. Studies of oxygen isotopes of the interstitial waters at Site 481 indicate positive values of d18O (SMOW) as a result of high-temperature alteration reactions occurring in the sills and the surrounding sediments. A minimum in dissolved chloride at about 100-125 meters sub-bottom at Sites 478, 481, and particularly Site 479 records a possible paleosalinity signal, associated with an event that substantially lowered salinities in the inner parts of the Gulf of California during Quaternary time.
Resumo:
Late Pliocene to Recent sediments from the southern Brazil Basin (DSDP Hole 515A, hydraulic piston core) were analyzed for evidence of episodic flow of Antarctic Bottom Water (AABW) through the Vema Channel. Carbonate-enriched layers punctuate the post-Pliocene section, otherwise composed predominantly of terrigenous silt and clay. Carbonate enrichment is thought to result from rapid deposition of fine-grained calcareous turbidites, originating in canyons incised on the northern margin of the Rio Grande Rise. The composition of benthic foraminiferal assemblages and the presence of stratigraphically displaced discoasters is consistent with a turbidite origin. Based on the presence of displaced Antarctic diatoms, AABW flow through the Vema Channel apparently has had a major influence on this site for only four periods during the last 2.7 Ma (about 45 to 250; 375 to 430; 700 to 780; 1320 to 1345 thousand yr. ago).
Resumo:
Benthic foraminifers from Ocean Drilling Program Leg 199 Holes 1215A, 1220B, and 1221C were examined across the Paleocene/Eocene boundary. Assemblages were studied in 240 samples. The benthic foraminiferal extinction event that correlates with the Paleocene/Eocene epoch boundary was recognized at these sites. Benthic assemblages before the event are characterized by high diversity, but those after the event are low in diversity. An assemblage of agglutinated foraminifers without carbonate cement was recognized at Sites 1220 and 1221. These assemblages were typically found after the event. The discovery of such agglutinated assemblages has never been reported before at this boundary.
Resumo:
The North Atlantic at present is ventilated by overflow of the Denmark Strait, Iceland-Faeroe Ridge, Faeroe Bank Channel, and Wyville-Thompson Ridge. The evolution of Cenozoic abyssal circulation of this region was related to tectonic opening and subsidence of these sills. We used d13C records of the benthic foraminifer Cibicidoides to decipher the timing of tectonically controlled changes in bottom-water circulation in the eastern basins (Biscay and Iberian) of the northern North Atlantic. Records from Site 608 (Kings Trough, northeastern North Atlantic) show that from about 24 to 15 Ma (early to early middle Miocene), d13C values in the Kings Trough area were depleted relative to western North Atlantic values and were more similar to Pacific d13C values. This reflects less ventilation of the Kings Trough region as compared to the well-oxygenated western North Atlantic. Comparison of Oligocene d13C records from Site 119 (Bay of Biscay) with western North Atlantic records suggests that the eastern basin was also relatively isolated prior to 24 Ma. At about 15 Ma, d13C values at Site 608 attained values similar to the western North Atlantic, indicating increased eastern basin ventilation in the middle Miocene. This increased advection into the eastern basin predated a major d18O increase which occurred at about 14.6 Ma. Subsidence estimates of the Greenland-Scotland Ridge indicate that the deepening of the Iceland-Faeroe Ridge was coincident with the marked change in eastern basin deep-water ventilation.
Resumo:
Oxygen- and carbon-isotope analyses have been performed on the Quaternary planktonic foraminifers of Sites 548 and 549 (DSDP Leg 80) to investigate major water mass changes that occurred in the northeastern Atlantic at different glacial-interglacial cycles and to compare them with the well-defined picture of 18,000 yr. ago. Oxygen-isotope stratigraphy also provides a chronological framework for the more important data on the fauna and flora. Although bioturbation and sedimentary gaps obliterate the climatic and stratigraphic record, general trends in the oceanographic history can be deduced from the isotopic data. Isotopic stratigraphy has tentatively been delineated down to isotopic Stage 16 at Site 548 and in Hole 549A. This stratigraphy fits well with that deduced from benthic foraminiferal d18O changes and with bioclimatic zonations based on foraminiferal associations at Site 549. Variations in the geographic extension and in the flux of the Gulf Stream subtropical waters are inferred from both d18O and d13C changes. Maximal fluxes occurred during the late Pliocene. Northward extension of subtropical waters increased through the various interglacial phases of the early Pleistocene and decreased through the late Pleistocene interglacial phases. Conversely, glacial maxima were more intense after Stage 16. Isotopic Stages 12 and 16 mark times of important change in water mass circulation. Oxygen- and carbon-isotope analyses have been performed on the Quaternary planktonic foraminifers of Sites 548 and 549 (DSDP Leg 80) to investigate major water mass changes that occurred in the northeastern Atlantic at different glacial-interglacial cycles and to compare them with the well-defined picture of 18,000 yr. ago. Oxygen-isotope stratigraphy also provides a chronological framework for the more important data on the fauna and flora. Although bioturbation and sedimentary gaps obliterate the climatic and stratigraphic record, general trends in the oceanographic history can be deduced from the isotopic data. Isotopic stratigraphy has tentatively been delineated down to isotopic Stage 16 at Site 548 and in Hole 549A. This stratigraphy fits well with that deduced from benthic foraminiferal d18O changes and with bioclimatic zonations based on foraminiferal associations at Site 549. Variations in the geographic extension and in the flux of the Gulf Stream subtropical waters are inferred from both d18O and d13C changes. Maximal fluxes occurred during the late Pliocene. Northward extension of subtropical waters increased through the various interglacial phases of the early Pleistocene and decreased through the late Pleistocene interglacial phases. Conversely, glacial maxima were more intense after Stage 16. Isotopic Stages 12 and 16 mark times of important change in water mass circulation.
Resumo:
Nodules occur in the siliceous calcareous ooze and siliceous marl at Site 503 in the eastern equatorial Pacific. They are present below a depth of about 11 meters throughout the green-colored reduced part of the section down to 228 meters, although they are most abundant between 30 and 85 meters. They are cylindrical or barrel-shaped, up to 70 mm long, and usually have an axial channel through them or are hollow. They appear to have formed around and/or within burrows. XRD studies and microprobe analyses show that they are homogeneous and consist of calcian rhododrosite and minor calcite; Mn is present to the extent of about 30%. Isotopic analyses of the carbonate give carbon values which range from -1.2 per mil to -3.8 per mil, and oxygen isotope compositions vary from +4.0 per mil to +6.0 per mil. These values are different from those for marine-derived carbonates as exemplified by the soft sediment filling of a burrow: d13C, -0.26 per mil; d18O, +1.05 per mil. The carbon isotope data indicate that carbonate derived (possibly indirectly) from seawater was mixed with some produced by organic diagenesis to form the nodules. The d18O values suggest that although they formed near the sediment surface, some modification or the introduction of additional diagenetic carbonate occurred during burial.
Resumo:
The effects of intrusive thermal stress have been studied on a number of Pleistocene sediment samples obtained from Leg 64 of the DSDP-IPOD program in the Gulf of California. Samples were selected from Sites 477, 478 and 481 where the organic matter was subjected to thermal stress from sill intrusions. For comparison purposes, samples from Sites 474 and 479 were selected as representative of unaltered material. The GC and GC-MS data show that lipids of the thermally unaltered samples were derived from microbial and terrestrial higher-plant detritus. Samples from sill proximities were found to contain thermally-derived distillates and those adjacent to sills contained essentially no lipids. Curie point pyrolysis combined with GC and GC-MS was used to show that kerogens from the unaltered samples reflected their predominantly autochthonous microbial origin. Pyrograms of the altered kerogens were much less complex than the unaltered samples, reflecting the thermal effects. The kerogens adjacent to the sills produce little or no pyrolysis products since these intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter. Examination of the kerogens by ESR showed that spin density and line width pass through a maximum during the course of alteration but ESR g-values show no correlation with maturity. Stable carbon isotope (d13C) values of kerogens decrease by 1-1.5 per mil near the sills at Sites 477 and 481 and the atomic N/C decreases slightly with proximity to a smaller sill at Site 478. Differences in maturation behavior between Site 477 and 481 and Site 478 are attributed to dissimilarities in thermal stress and to chemical and isotopic heterogeneity of Guaymas Basin protokerogen.
Resumo:
At marine seeps, methane is microbially oxidized resulting in the precipitation of carbonates close to the seafloor. Methane oxidation leads to sulfate depletion in sediment pore water, which induces a change in redox conditions. Rare earth element (REE) patterns of authigenic carbonate phases collected from modern seeps of the Gulf of Mexico, the Black Sea, and the Congo Fan were analyzed. Different carbonate minerals including aragonite and calcite with different crystal habits have been selected for analysis. Total REE content (SumREE) of seep carbonates varies widely, from 0.1 ppm to 42.5 ppm, but a common trend is that the SumREE in microcrystalline phases is higher than that of the associated later phases including micospar, sparite and blocky cement, suggesting that SumREE may be a function of diagenesis. The shale-normalized REE patterns of the seep carbonates often show different Ce anomalies even in samples from a specific site, suggesting that the formation conditions of seep carbonates are variable and complex. Overall, our results show that apart from anoxic, oxic conditions are at least temporarily common in seep environments.
Resumo:
The benthic isotopic record of Miocene Cibicidoides from Site 709 provides a record of conditions in the Indian Ocean at a depth of about 3200 mbsf. As expected, the record qualitatively resembles those of other Deep Sea Drilling Project and Ocean Drilling Program sites. The data are consistent with the scenario for the evolution of thermohaline circulation in the Miocene Indian Ocean proposed by Woodruff and Savin (1989, doi:10.1029/PA004i001p00087). Further testing of that scenario, however, requires isotopic data for Cibicidoides from other Indian Ocean sites. There is a correlation between d13C values of Cibicidoides and planktonic:benthic (P:B)ratios of Site 709 sediments, implying a causal relationship between the corrosiveness of deep waters and concentration of CO2 derived from oxidation of organic matter.