937 resultados para Animals -- Ús terapèutic
Resumo:
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction.
Resumo:
In this study, we show that administration of Bothrops moojeni venom in rats induces a general disturbance in the distribution and content of the tight junctional protein ZO-1, the cell-matrix receptor beta 1 integrin, the cytoskeletal proteins, vinculin and F-actin, and of the extracellular matrix component laminin in renal corpuscles and cortical nephron tubules. These findings suggest that cell-cell and cell-matrix adhesion proteins may be molecular targets in the B. moojeni-induced kidney injury.
Resumo:
Immune responses against thyroid carcinomas have long been demonstrated and associations between inflammatory microenvironment and thyroid carcinomas repeatedly reported. This scenario has prompted scientists throughout the world to unveil how the inflammatory microenvironment is established in thyroid tumors and what is its influence on the outcome of patients with thyroid carcinoma. Many studies have reported the role of evasion from the immune system in tumor progression and reinforced the weakness of the innate immune response toward thyroid cancer spread in advanced stages. Translational studies have provided evidence that an increased density of tumor-associated macrophages in poorly differentiated thyroid carcinoma (DTC) is associated with an aggressive phenotype at diagnosis and decreased cancer-related survival, whereas well-DTC microenvironment enriched with macrophages is correlated with improved disease-free survival. It is possible that these different results are related to different microenvironments. Several studies have provided evidence that patients whose tumors are not infiltrated by lymphocytes present a high recurrence rate, suggesting that the presence of lymphocytes in the tumor microenvironment may favor the prognosis of patients with thyroid carcinoma. However, the effect of lymphocytes and other immune cells on patient outcome seems to result from complex interactions between the tumor and immune system, and the molecular pattern of cytokines and chemokines helps to explain the involvement of the immune system in thyroid tumor progression. The inflammatory microenvironment may help to characterize aggressive tumors and to identify patients who would benefit from a more invasive approach, probably sparing the vast majority of patients with an indolent disease from unnecessary procedures.
Resumo:
The practice of burning sugarcane obtained by non-mechanized harvesting exposes workers and the people of neighboring towns to high concentrations of particulate matter (PM) that is harmful to health, and may trigger a series of cardiorespiratory diseases. The aim of this study was to analyze the chemical composition of the micro-particles coming from sugarcane burning residues and to verify the effects of this micro-particulate matter on lung and tracheal tissues. Micro-particulate matter (PM10) was obtained by dissolving filter paper containing burnt residues in NaCl solution. This material was instilled into the Wistar rats' nostrils. Histological analyses (hematoxylin and eosin - HE) of cardiac, lung and tracheal tissues were performed. Inflammatory mediators were measured in lung tissues by using ELISA. The chemical composition of the particulate material revealed a large quantity of the phthalic acid ester, high concentrations of phenolic compounds, anthracene and polycyclic aromatic hydrocarbons (PAH). Histological analysis showed a reduction in subjacent conjunctive tissue in the trachea, lung inflammation with inflammatory infiltrate formation and reduction of alveolar spaces and a significant increase (p<0.05) in the release of IL-1α, IL-1β, IL-6, and INF-γ in the group treated with PM10 when compared to the control group. We concluded that the burning sugarcane residues release many particles, which have toxic chemical compounds. The micro-particulate matter can induce alterations in the respiratory system.
Resumo:
Mucositis induced by anti-neoplastic drugs is an important, dose-limiting and costly side-effect of cancer therapy. To evaluate the effect of the topical application of S-nitrosoglutathione (GSNO), a nitric oxide donor, on 5-fluorouracil (5-FU)-induced oral mucositis in hamsters. Oral mucositis was induced in male hamsters by two intraperitoneal administrations of 5-FU on the first and second days of the experiment (60 and 40 mg/kg, respectively) followed by mechanical trauma on the fourth day. Animals received saline, HPMC or HPMC/GSNO (0.1, 0.5 or 2.0 mM) 1 h prior to the 5-FU injection and twice a day for 10 or 14 days. Samples of cheek pouches were harvested for: histopathological analysis, TNF-α and IL-1β levels, immunohistochemical staining for iNOS, TNF-α, IL-1β, Ki67 and TGF-β RII and a TUNEL assay. The presence and levels of 39 bacterial taxa were analyzed using the Checkerboard DNA-DNA hybridization method. The profiles of NO released from the HPMC/GSNO formulations were characterized using chemiluminescence. The HPMC/GSNO formulations were found to provide sustained release of NO for more than 4 h at concentration-dependent rates of 14 to 80 nmol/mL/h. Treatment with HPMC/GSNO (0.5 mM) significantly reduced mucosal damage, inflammatory alterations and cell death associated with 5-FU-induced oral mucositis on day 14 but not on day 10. HPMC/GSNO administration also reversed the inhibitory effect of 5-FU on cell proliferation on day 14. In addition, we observed that the chemotherapy significantly increased the levels and/or prevalence of several bacterial species. Topical HPMC/GSNO accelerates mucosal recovery, reduces inflammatory parameters, speeds up re-epithelization and decreases levels of periodontopathic species in mucosal ulcers.
Resumo:
Isatin, an indole alkaloid has been shown to have anti-microbial, anti-tumor and anti-inflammatory effects. Due to its findings, we evaluated whether this alkaloid would have any effect on TNBS-induced colitis. Animals (male Unib:WH rats, aged 8 weeks old) were induced colitis through a rectal administration of 2,4,6-trinitrobenzene sulphonic acid using a catheter inserted 8 cm into the rectum of the animals. The rats were divided into two major groups: non-colitic and colitic. The colitic group was sub-divided into 6 groups (10 animals per group): colitic non-treated, Isatin 3; 6; 12.5; 18.75 and 25 mg/kg. Our main results showed that the oral treatment with Isatin 6 and 25 mg/kg were capable of avoiding the increase in TNF-α, COX-2 and PGE₂ levels when compared to the colitic non-treated group. Interestingly, the same doses (6 and 25 mg/kg) were also capable of preventing the decrease in IL-10 levels comparing with the colitic non-treated group. The levels of MPO, (an indirect indicator of neutrophil presence), were also maintained lower than those of the colitic non-treated group. Isatin also prevented the decrease of SOD activity and increase of GSH-Px and GSH-Rd activity as well as the depletion of GSH levels. In conclusion, both pre-treatments (6 and 25 mg/kg) were capable of protecting the gut mucosa against the injury caused by TNBS, through the combination of antioxidant and anti-inflammatory properties, which, together, showed a protective activity of the indole alkaloid Isatin.
Resumo:
A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C11H11N2O2)2]⋅6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The (13)C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the (15)N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells.
Resumo:
The inflation pressure of the endotracheal tube cuff can cause ischemia of the tracheal mucosa at high pressures; thus, it can cause important tracheal morbidity and tracheal microaspiration of the oropharyngeal secretion, or it can even cause pneumonia associated with mechanical ventilation if the pressure of the cuff is insufficient. In order to investigate the effectiveness of the RUSCH® 7.5 mm endotracheal tube cuff, this study was designed to investigate the physical and mechanical aspects of the cuff in contact with the trachea. For this end, we developed an in vitro experimental model to assess the flow of dye (methylene blue) by the inflated cuff on the wall of the artificial material. We also designed an in vivo study with 12 Large White pigs under endotracheal intubation. We instilled the same dye in the oral cavity of the animals, and we analyzed the presence or not of leakage in the trachea after the region of the cuff after their deaths (animal sacrifice). All cuffs were inflated at the pressure of 30 cmH2O. We observed the passage of fluids through the cuff in all in vitro and in vivo experimental models. We conclude that, as well as several other cuff models in the literature, the RUSCH® 7.5 mm tube cuffs are also not able to completely seal the trachea and thus prevent aspiration of oropharyngeal secretions. Other prevention measures should be taken.
Resumo:
Previous studies from our group have demonstrated the protective effect of S-nitroso-N-acetylcysteine (SNAC) on the cardiovascular system in dyslipidemic LDLr-/- mice that develop atheroma and left ventricular hypertrophy after 15 days on a high fat diet. We have shown that SNAC treatment attenuates plaque development via the suppression of vascular oxidative stress and protects the heart from structural and functional myocardial alterations, such as heart arrhythmia, by reducing cardiomyocyte sensitivity to catecholamines. Here we investigate the ability of SNAC to modulate oxidative stress and cell survival in cardiomyocytes during remodeling and correlation with β₂-AR signaling in mediating this protection. Ventricular superoxide (O₂⁻) and hydrogen peroxide (H₂O₂) generation was measured by HPLC methods to allow quantification of dihydroethidium (DHE) products. Ventricular histological sections were stained using terminal dUTP nick-end labeling (TUNEL) to identify nuclei with DNA degradation (apoptosis) and this was confirmed by Western blot for cleaved caspase-3 and caspase-7 protein expression. The findings show that O₂⁻ and H₂O₂ production and also cell apoptosis were increased during left ventricular hypertrophy (LVH). SNAC treatment reduced oxidative stress during on cardiac remodeling, measured by decreased H₂O₂ and O₂⁻ production (65% and 52%, respectively), and a decrease in the ratio of p-Ser1177 eNOS/total eNOS. Left ventricle (LV) from SNAC-treated mice revealed a 4-fold increase in β₂-AR expression associated with coupling change to Gi; β₂-ARs-S-nitrosation (β₂-AR-SNO) increased 61%, while apoptosis decreased by 70%. These results suggest that the cardio-protective effect of SNAC treatment is primarily through its anti-oxidant role and is associated with β₂-ARs overexpression and β₂-AR-SNO via an anti-apoptotic pathway.
Resumo:
The objective of the study was to illustrate the applicability and significance of the novel Lewis urothelial cancer model compared to the classic Fisher 344. Fischer 344 and Lewis females rats, 7 weeks old, were intravesical instilled N-methyl-N-nitrosourea 1.5 mg/kg every other week for a total of four doses. After 15 weeks, animals were sacrificed and bladders analyzed: histopathology (tumor grade and stage), immunohistochemistry (apoptotic and proliferative indices) and blotting (Toll-like receptor 2-TLR2, Uroplakin III-UP III and C-Myc). Control groups received placebo. There were macroscopic neoplastic lesions in 20 % of Lewis strain and 70 % of Fischer 344 strain. Lewis showed hyperplasia in 50 % of animals, normal bladders in 50 %. All Fischer 344 had lesions, 20 % papillary hyperplasia, 30 % dysplasia, 40 % neoplasia and 10 % squamous metaplasia. Proliferative and apoptotic indices were significantly lower in the Lewis strain (p < 0.01). The TLR2 and UP III protein levels were significantly higher in Lewis compared to Fischer 344 strain (70.8 and 46.5 % vs. 49.5 and 16.9 %, respectively). In contrast, C-Myc protein levels were significantly higher in Fischer 344 (22.5 %) compared to Lewis strain (13.7 %). The innovative Lewis carcinogen resistance urothelial model represents a new strategy for translational research. Preservation of TLR2 and UP III defense mechanisms might drive diverse urothelial phenotypes during carcinogenesis in differently susceptible individuals.
Resumo:
Skin-wound healing is a complex and dynamic biological process involving inflammation, proliferation, and remodeling. Recent studies have shown that statins are new therapeutical options because of their actions, such as anti-inflammatory and antioxidant activity, on vasodilation, endothelial dysfunction and neoangiogenesis, which are independent of their lipid-lowering action. Our aim was to investigate the effect of atorvastatin on tissue repair after acute injury in healthy animals. Rats were divided into four groups: placebo-treated (P), topical atorvastatin-treated (AT), oral atorvastatin-treated (AO), topical and oral atorvastatin-treated (ATO). Under anesthesia, rats were wounded with an 8-mm punch in the dorsal region. Lesions were photographed on Days 0, 1, 3, 7, 10, 12, and 14 post-injury and samples taken on Days 1, 3, 7, and 14 for protein-expression analysis of insulin receptor substrate (IRS)-1, phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase (GSK)-3, endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), extracellular signal-regulated kinase (ERK), interleukin (IL)-10, IL-1β, IL-6, and tumor necrosis factor (TNF)-α. Upon macroscopic examination, we observed significant reductions of lesion areas in groups AT, AO, and ATO compared to the P group. Additionally, AT and AO groups showed increased expression of IRS-1, PI3K, Akt, GSK-3, and IL-10 on Days 1 and 3 when compared with the P group. All atorvastatin-treated groups showed higher expression of IRS-1, PI3K, Akt, GSK-3, IL-10, eNOS, VEGF, and ERK on Day 7. On Days 1, 3, and 7, all atorvastatin-treated groups showed lower expression of IL-6 and TNF-α when compared with the P group. We conclude that atorvastatin accelerated tissue repair of acute lesions in rats and modulated expressions of proteins and cytokines associated with cell-growth pathways.
Resumo:
Iranian propolis is a natural product of honeybees that has significant and varied anti-cancer benefits. The present study was designed to investigate the protective effects of Iranian propolis on gastric tissue carcinogenesis in an animal model. Propolis samples were collected from Hamadan and Taleghan districts of Iran, followed by ultra performance liquid chromatography mass spectrometry analysis. Fifty-five rats were divided into three groups; control, Taleghan propolis and Hamadan propolis. All the animals received N-methyl-N-nitro-N-nitrosoguanidine (MNNG, 100 μg/ml) in drinking water ad libitum for 34 weeks. In the treated groups, nutrition with propolis was started two weeks before MNNG administration. At the end of the study, the entire gastrointestinal tract was scrutinized for tumors, and the rest of the body was assessed for metastatic deposits. Results indicated that the incidence and number of tumors were significantly decreased by propolis in comparison with the control group (P < 0.05). The nuclear/cytoplasmic ratio, epithelial stratification, nuclear dispolarity, structural abnormality, and Beta-catenin and Bcl-2 proteins expression were significantly reduced in the propolis group compared to the control group (P < 0.05). In addition, Bax protein expression was significantly increased in the propolis group in comparison with the control group (P < 0.05). The present study demonstrated the potential chemoprotective effects of the Iranian propolis against gastric cancer in a typical animal model. The results provide evidence for the hypothesis that Iranian propolis may exert a chemoprotective effect on MNNG-initiated gastric cancer through inhibition of cell proliferation and apoptosis induction.
Resumo:
The present study investigated the effectiveness of mesenchymal stem cells (MSCs) associated with a fibrin scaffold (FS) for the peripheral regenerative process after nerve tubulization. Adult female Lewis rats received a unilateral sciatic nerve transection followed by repair with a polycaprolactone (PCL)-based tubular prosthesis. Sixty days after injury, the regenerated nerves were studied by immunohistochemistry. Anti-p75NTR immunostaining was used to investigate the reactivity of the MSCs. Basal labeling, which was upregulated during the regenerative process, was detected in uninjured nerves and was significantly greater in the MSC-treated group. The presence of GFP-positive MSCs was detected in the nerves, indicating the long term survival of such cells. Moreover, there was co-localization between MSCs and BNDF immunoreactivity, showing a possible mechanism by which MSCs improve the reactivity of SCs. Myelinated axon counting and morphometric analyses showed that MSC engrafting led to a higher degree of fiber compaction combined with a trend of increased myelin sheath thickness, when compared with other groups. The functional result of MSC engrafting was that the animals showed higher motor function recovery at the seventh and eighth week after lesion. The findings herein show that MSC+FS therapy improves the nerve regeneration process by positively modulating the reactivity of SCs.
Resumo:
The local anesthetic effects on neuromuscular junction and its influence on blockade produced by nondepolarizing neuromuscular blockers are still under-investigated; however, this interaction has been described in experimental studies and in humans. The aim of this study was to evaluate in vitro the interaction between ropivacaine and pancuronium, the influence on transmission and neuromuscular blockade, and the effectiveness of neostigmine and 4-aminopyridine to reverse the blockade. Rats were divided into groups (n=5) according to the study drug: ropivacaine (5μgmL(-1)); pancuronium (2μg.mL(-1)); ropivacaine+pancuronium. Neostigmine and 4-aminopyridine were used at concentrations of 2μgmL(-1) and 20μgmL(-1), respectively. The effects of ropivacaine on membrane potential and miniature end-plate potential, the amplitude of diaphragm responses before and 60minutes after the addition of ropivacaine (degree of neuromuscular blockade with pancuronium and with the association of pancuronium-ropivacaine), and the effectiveness of neostigmine and 4-aminopyridine on neuromuscular block reversal were evaluated. Ropivacaine did not alter the amplitude of muscle response (the membrane potential), but decreased the frequency and amplitude of the miniature end-plate potential. Pancuronium blockade was potentiated by ropivacaine, and partially and fully reversed by neostigmine and 4-aminopyridine, respectively. Ropivacaine increased the neuromuscular block produced by pancuronium. The complete antagonism with 4-aminopyridine suggests presynaptic action of ropivacaine.
Resumo:
The purpose of this study was to assess whether the adhesive permits the collateral repair of axons originating from a vagus nerve to the interior of a sural nerve graft, and whether low-level laser therapy (LLLT) assists in the regeneration process. Study sample consisted of 32 rats randomly separated into three groups: Control Group (CG; n=8), from which the intact sural nerve was collected; Experimental Group (EG; n=12), in which one of the ends of the sural nerve graft was coapted to the vagus nerve using the fibrin glue; and Experimental Group Laser (EGL; n=12), in which the animals underwent the same procedures as those in EG with the addition of LLLT. Ten weeks after surgery, the animals were euthanized. Morphological analysis by means of optical and electron microscopy, and morphometry of the regenerated fibers were employed to evaluate the results. Collateral regeneration of axons was observed from the vagus nerve to the interior of the autologous graft in EG and EGL, and in CG all dimensions measured were greater and presented a significant difference in relation to EG and EGL, except for the area and thickness of the myelin sheath, that showed significant difference only in relation to the EG. The present study demonstrated that the fibrin glue makes axonal regeneration feasible and is an efficient method to recover injured peripheral nerves, and the use of low-level laser therapy enhances nerve regeneration.