936 resultados para Angular distortion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure, thermal expansion and electrical conductivity of strontium-doped neodymium ferrite (Nd1-xSrxFeO3-delta where 0less than or equal toxless than or equal to0.4) were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction. The orthorhombic distortion decreases with increasing Sr substitution. The pseudocubic lattice parameter shows a minimum at x=0.3. The thermal expansion curves for x=0.2-0.4 displayed rapid increase in slope at higher temperatures. The electrical conductivity increased with Sr content and temperature. The calculated activation energies for electrical conduction decreased with increasing x. The electrical conductivity can be described by the small polaron hopping mechanism. The charge compensation for divalent ion on the A-site is provided by the formation of Fe4+ ions on the B site and vacancies on the oxygen sublattice. The results indicate two defect domains: for low values of x, the predominant defect is Fe4+ ions, whereas for higher values of x, oxygen vacancies dominate. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositional evolution in sputter deposited LiCoO(2) thin films is influenced by process parameters involved during deposition. The electrochemical performance of these films strongly depends on their microstructure, preferential orientation and stoichiometry. The transport process of sputtered Li and Co atoms from the LiCoO(2) target to the substrate, through Ar plasma in a planar magnetron configuration, was investigated based on the Monte Carlo technique. The effect of sputtering gas pressure and the substrate-target distance (d(st)) on Li/Co ratio, as well as, energy and angular distribution of sputtered atoms on the substrate were examined. Stable Li/Co ratios have been obtained at 5 Pa pressure and d(st) in the range 5 11 cm. The kinetic energy and incident angular distribution of Li and Co atoms reaching the substrate have been found to be dependent on sputtering pressure. Simulations were extended to predict compositional variations in films prepared at various process conditions. These results were compared with the composition of films determined experimentally using x-ray photoelectron spectroscopy (XPS). Li/Co ratio calculated using XPS was in moderate agreement with that of the simulated value. The measured film thickness followed the same trend as predicted by simulation. These studies are shown to be useful in understanding the complexities in multicomponent sputtering. (C) 2011 American Institute of Physics. doi:10.1063/1.3597829]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature dependent Mossbauer measurements are done on the samples of La1- xCaxMn1-y (FeyO3)-Fe-57 with x=0 and 0.25, and y=0.01. With decreasing temperature, the specimen with x=0.25 shows a paramagnetic to ferromagnetic transition around 175 K. In the specimen x=0.0, the temperature dependence of both the center shift (delta) and the recoilless fraction (f) can be fitted very well with the Debye theory with a theta(D)=320+/-50 K. But for the specimens with x=0.25, f and delta show distinct deviations from the Debye behavior in the temperature range in which the resistivity shows a sharp decrease. Dips observed in both the f and delta around the transition temperature suggest that the Jahn-Teller distortion observed in these systems is dynamic in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural and dynamical properties of ethane in one-dimensional channels of AlPO4-5 and carbon nanotube have been investigated at dilute concentration with the help of molecular dynamics simulation. Density distributions and orientational structure of ethane have been analyzed. Repulsive interactions seem to play an important role when ethane is located in the narrow part of the AlPO4-5 channel. In AlPO4-5, parallel orientation is predominant over perpendicular orientation except when ethane is located in the broader part of the channel. Unlike in the case of single-file diffusion, our results in carbon nanotube show that at dilute concentrations the mean squared displacement, mu(2)(t) approximate to t(alpha), alpha = 1.8. The autocorrelation function for the z-component of angular velocity of ethane in space-fixed frame of reference shows a pronounced negative correlation. This is attributed to the restriction in the movement of ethane along the x- and y- directions. It is seen that the ratio of reorientational correlation times does not follow the Debye model for confined ethane but it is closer to the predictions of the Debye model for bulk ethane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A scheme for denoting the absolute spatial orientation of molecules and molecular fragments is presented; this is based on three angular deviations - one for each spatial dimension - with respect to a reference orientation, which is itself defined with the help of certain features of the Cahn-Ingold-Prelog stereochemical notation. The new scheme helps in reconstructing the three-dimensional characteristics of molecules from purely verbal descriptors, and may thus find application in various information storage and retrieval processes (e.,-. encrypting holograms, etc.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple thermodynamic analysis of the well-known Michaelis-Menten equation (MME) of enzyme catalysis is proposed that employs the chemical potential mu to follow the Gibbs free energy changes attending the formation of the enzyme-substrate complex and its turnover to the product. The main conclusion from the above analysis is that low values of the Michaelis constant KM and high values of the turnover number k(cat) are advantageous: this supports a simple algebraic analysis of the MME, although at variance with current thinking. Available data apparently support the above findings. It is argued that transition state stabilisation - rather than substrate distortion or proximity - is the key to enzyme catalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of ordered phases that are formed when nitrogen is confined in slit graphite pores of height h is investigated using Monte Carlo simulations. The pore wall consists of a single-structured graphite sheet. Canonical ensemble simulations are carried out for temperatures ranging from 15 to 70Kwith layer density distributions, in-plane, out-of-plane angular distributions and snapshots evaluated at different temperatures. At each pore height the pore densities are obtained from independent grand ensemble simulations. At the smallest pore height studied (h)7 Å), where a single layer of molecules is accommodated at the center of the pore, the orientations are predominantly wall parallel, forming a biaxially incommensurate herringbone structure.Whentwo or more fluid layers are formed in the slit pore, the orientation of molecules adsorbed next to the wall can exist in either the herringbone or hexagonal phases. In all the multilayered cases studied, with the exception of the h ) 10 Å pore, where both wall layers form a commensurate herringbone structure, the low-temperature wall structures are incommensurate, possessing 6-fold hexagonal symmetry. The presence of the pinwheel structures, which were observed at low temperatures in the h ) 12 Å and h ) 14 Å pores, is determined by the pore height or the proximity and/or density of the adjacent fluid layers when inner layers are present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compute the temperature profiles of accretion discs around rapidly rotating strange stars, using constant gravitational mass equilibrium sequences of these objects, considering the full effect of general relativity. Beyond a certain critical value of stellar angular momentum (J), we observe the radius ( $r_{\rm orb}$) of the innermost stable circular orbit (ISCO) to increase with J (a property seen neither in rotating black holes nor in rotating neutron stars). The reason for this is traced to the crucial dependence of ${\rm d}r_{\rm orb}/{\rm d}J$ on the rate of change of the radial gradient of the Keplerian angular velocity at $r_{\rm orb}$ with respect to J. The structure parameters and temperature profiles obtained are compared with those of neutron stars, as an attempt to provide signatures for distinguishing between the two. We show that when the full gamut of strange star equation of state models, with varying degrees of stiffness are considered, there exists a substantial overlap in properties of both neutron stars and strange stars. However, applying accretion disc model constraints to rule out stiff strange star equation of state models, we notice that neutron stars and strange stars exclusively occupy certain parameter spaces. This result implies the possibility of distinguishing these objects from each other by sensitive observations through future X-ray detectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid over a rotating infinite disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The magnetic field is applied normal to the disk surface. The new self-similar solution of the Navier-Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier-Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation-point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large magnetic field or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also the surface shear stress in the radial direction and the surface heat transfer decrease with increasing magnetic field, but the surface shear stress in the tangential direction increases. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider here the detailed application of a model Reynolds stress equation (Narasimha 1969) to plane turbulent wakes subjected to pressure gradients. The model, which is a transport equation for the stress exhibiting relaxation and diffusion, is found to be consistent with the observed response of a wake to a nearly impulsive pressure gradient (Narasimha & Prabhu 1971). It implies in particular that a wake can be in equilibrium only if the longitudinal strain rate is appreciably less than the wake shear. We then describe a further series of experiments, undertaken to investigate the range of validity of the model. It is found that, with an appropriate convergence correction when necessary, the model provides excellent predictions of wake development under favourable, adverse and mixed pressure gradients. Furthermore, the behaviour of constant-pressure distorted wakes, as reported by Keffer (1965, 1967), is also explained very well by the model when account is taken of the effective flow convergence produced by the distortion. In all these calculations, only a simple version of the model is used, involving two non-dimensional constants both of which have been estimated from a single relaxation experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of ferroelectric ABi2Ta2O9 bismuth-layered structure, where A = Ba, Sr and Ca, were prepared by pulsed laser deposition technique on Pt/TiO2/SiO2/Si(100) substrates. The influence of substrate temperature between 500 to 750°C, and oxygen partial pressure 100-300 mTorr, on the structural and electrical properties of the films was investigated. The films deposited above 650°C substrate temperature showed complete Aurivillius layered structure. Films annealed at 750°C for 1h in oxygen atmosphere have exhibited better electrical properties. Atomic force microscopy study of surface topography shows that the films grown at lower temperature has smaller grains and higher surface roughness. This paper discusses the pronounced influence of A-site cation substitution on the structural and ferroelectric properties with the aid of Raman spectroscopy, X-ray diffraction and electrical properties. The degradation of ferroelectric properties with Ba and Ca substitution at A-sites is attributed to the higher structural distortion caused by changing tolerance factor. A systematic proportionate variation of coercive field is attributed to electronegativity difference of A-site cations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first results of an observational programme undertaken to map the fine structure line emission of singly ionized carbon ([ CII] 157 : 7409 mum) over extended regions using a Fabry Perot spectrometer newly installed at the focal plane of a 100 cm balloon- borne far- infrared telescope. This new combination of instruments has a velocity resolution of similar to 200 km s(-1) and an angular resolution of 1.'5. During the first flight, an area of 30' x 15' in Orion A was mapped. These observations extend over a larger area than previous observations, the map is fully sampled and the spectral scanning method used enables reliable estimation of the continuum emission at frequencies adjacent to the [ CII] line. The total [ CII] line luminosity, calculated by considering up to 20% of the maximum line intensity is 0.04% of the luminosity of the far- infrared continuum. We have compared the [ CII] intensity distribution with the velocity- integrated intensity distributions of (CO)-C-13(1- 0), CI(1- 0) and CO( 3- 2) from the literature. Comparison of the [ CII], [ CI] and the radio continuum intensity distributions indicates that the largescale [ CII] emission originates mainly from the neutral gas, except at the position of M 43, where no [ CI] emission corresponding to the [ CII] emission is seen. Substantial part of the [ CII] emission from here originates from the ionized gas. The observed line intensities and ratios have been analyzed using the PDR models by Kaufman et al. ( 1999) to derive the incident UV flux and volume density at a few selected positions. The models reproduce the observations reasonably well at most positions excepting the [ CII] peak ( which coincides with the position of theta(1) Ori C). Possible reason for the failure could be the simplifying assumption of a homogeneous plane parallel slab in place of a more complicated geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the possible effects of CP violation in the Higgs sector on t (t) over bar production at a gammagamma collider. These studies are performed in a model-independent way in terms of six form factors {R(S-gamma), J(S-gamma), R(P-gamma), J(P-gamma), S-t, P-t} which parametrize the CP mixing in the Higgs sector, and a strategy for their determination is developed. We observe that the angular distribution of the decay lepton from t/(t) over bar produced in this process is independent of any CP violation in the tbW vertex and hence best suited for studying CP mixing in the Higgs sector. Analytical expressions are obtained for the angular distribution of leptons in the c.m. frame of the two colliding photons for a general polarization state of the incoming photons. We construct combined asymmetries in the initial state lepton (photon) polarization and the final state lepton charge. They involve CP even (x's) and odd (y's) combinations of the mixing parameters. We study limits up to which the values of x and y, with only two of them allowed to vary at a time, can be probed by measurements of these asymmetries, using circularly polarized photons. We use the numerical values of the asymmetries predicted by various models to discriminate among them. We show that this method can be sensitive to the loop-induced CP violation in the Higgs sector in the minimal supersymmetric standard model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well know that grain boundaries enhance strength at low temperatures by acting as obstacles to dislocation motion, and they retard strength at higher temperatures by processes involving grain boundary sliding. The available data on the influence of grain boundaries on deformation in copper is summarized. Equi-channel angular extrusion offers a convenient means for imposing severe plastic deformation to refine the grain size in bulk materials. Experimental data on fine grained copper produced by equi-channel angular extrusion will be described, and the implications of the data for diffusion creep and superplasticity will be discussed.