940 resultados para Amorphous Cellulose
Resumo:
Paclitaxel (Tx)-loaded anti-HER2 immunonanoparticles (NPs-Tx-HER) were prepared by the covalent coupling of humanized monoclonal anti-HER2 antibodies (trastuzumab, Herceptin) to Tx-loaded poly (dl-lactic acid) nanoparticles (NPs-Tx) for the active targeting of tumor cells that overexpress HER2 receptors. The physico-chemical properties of NPs-Tx-HER were compared to unloaded immunonanoparticles (NPs-HER) to assess the influence of the drug on anti-HER2 coupling to the NP surface. The immunoreactivity of sulfo-MBS activated anti-HER2 mAbs and the in vitro efficacy of NPs-Tx-HER were tested on SKOV-3 ovarian cancer cells that overexpress HER2 antigens. Tx-loaded nanoparticles (NPs-Tx) obtained by a salting-out method had a size of 171+/-22 nm (P.I.=0.1) and an encapsulation efficiency of about of 78+/-10%, which corresponded to a drug loading of 7.8+/-0.8% (w/w). NPs-Tx were then thiolated and conjugated to activated anti-HER2 mAbs to obtain immunonanoparticles of 237+/-43 nm (P.I.=0.2). The influence of the activation step on the immunoreactivity of the mAbs was tested on SKOV-3 cells using 125I-radiolabeled mAbs, and the activity of the anti-HER2 mAbs was minimally affected after sulfo-MBS functionalization. Approximately 270 molecules of anti-HER2 mAbs were bound per nanoparticle. NPs-Tx-HER exhibited a zeta potential of 0.2+/-0.1 mV. The physico-chemical properties of the Tx-loaded immunonanoparticles were very similar to unloaded immunonanoparticles, suggesting that the encapsulation of the drug did not influence the coupling of the mAbs to the NPs. No drug loss was observed during the preparation process. DSC analysis showed that encapsulated Tx is in an amorphous or disordered-crystalline phase. These results suggest that Tx is entrapped in the polymeric matrix and not adsorbed to the surface of the NPs. In vitro studies on SKOV-3 ovarian cancer cells demonstrated the greater cytotoxic effect of NPs-Tx-HER compared to other Tx formulations. The results showed that at 1 ng Tx/ml, the viability of cells incubated with drug encapsulated in NP-Tx-HER was lower (77.32+/-5.48%) than the viability of cells incubated in NPs-Tx (97.4+/-12%), immunonanoparticles coated with Mabthera, as irrelevant mAb (NPs-Tx-RIT) (93.8+/-12%) or free drug (92.3+/-9.3%).
Resumo:
The alternatives used for minimizing the usage of chlorine dioxide in bleaching sequences included a hot acid hydrolysis (Ahot) stage, the use of hot chlorine dioxide (Dhot) and ozone stages at medium consistency and high consistency (Zmc and Zhc), in addition to stages with atmospheric hydrogen peroxide (P) and pressurized hydrogen peroxide (PO). The results were interpreted based on the cost of the chemical products, bleaching process yields and on minimizing the environmental impact of the bleaching process. In spite of some process restrictions, high ISO brightness levels were kept around 90 % brightness. Additionally, the inclusion of stages like acid hydrolysis, pressurized peroxide and ozone in the bleaching sequences provided an increase in operating flexibility, aimed at reducing environmental impact (ECF Light). The Dhot(EOP)D(PO) sequence presented lower operating cost for ISO brightness above 92 %. However, this kind of sequence was not allowed for closing the wastewater circuit, even partially. For ISO brightness level around 91%, the AhotZhcDP sequence presented a lower operating cost than the others
Resumo:
Pancreatic acinar cells of euthermic, hibernating and arousing individuals of the hazel dormouse Muscardinus avellanarius (Gliridae) have been observed at the electron-microscopic level and analysed by means of ultrastructural morphometry and immunocytochemistry in order to investigate possible fine structural changes of cellular components during periods of strikingly different degrees of metabolic activity. During hibernation, the cisternae of the rough endoplasmic reticulum (RER) flatten assuming a parallel pattern, the Golgi apparatus is extremely reduced and the mitochondria contain many electron-dense particles. The cell nuclei appear irregularly shaped, with deep indentations containing small zymogen granules. They also contain abundant coiled bodies and unusual constituents, such as amorphous bodies and dense granular bodies. Large numbers of zymogen granules occur in all animals. However, the acinar lumina are open and filled with zymogen only in euthermic animals, whereas, in hibernating and arousing individuals, they appear to be closed. Morphometrical analyses indicate that, in pancreatic acinar cells, nuclei and zymogen granules significantly decrease in size from euthermia to hibernation, probably reflecting a drastic decrease of metabolic activities, mainly protein synthesis and processing. In all the studied animals, immunocytochemistry with specific antibodies has revealed an increasing gradient in alpha-amylase content along the RER-Golgi-zymogen granule pathway, reflecting the protein concentration along the secretory pathway. Moreover, during deep hibernation, significantly larger amounts of alpha-amylase accumulate in RER and zymogen granules in comparison to the other seasonal phases analysed. Upon arousal, all cytoplasmic and nuclear constituents restore their euthermic aspect and all morphometrical and immunocytochemical parameters exhibit the euthermic values, thereby indicating a rapid resumption of metabolic activities.
Resumo:
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
Resumo:
An old erg covers the northern part of the Lake Chad basin. This dune landform allowed the formation of many inter- dune ponds of various sizes. Still present in certain zones where the groundwater level is high (e.g. Kanem, southern Manga), these ponds formed in the past a vast network of lacustrine microsystems, as shown by the nature and the dis- tribution of their deposits. In the Manga, these interdune deposits represent the main sedimentary records of the Holo- cene environmental succession. Their paleobiological (pollens, diatoms, ostracods) and geochemical (δ18O, δ13C, Sr/ Ca) contents are often the basis for paleoenvironmental reconstruction. On the other hand, their sedimentological char- acters are rarely exploited. This study of palustro-lacustrine deposits of the Holocene N'Guigmi lake (northern bank of the Lake Chad; Niger) is based on the relationships between the sedimentological features and the climato-hydrological fluctuations. The mineralogical parameters (e.g. calcium carbonate content, clay mineralogy) and the nature of autoch- thonous mineralization (i.e. amorphous silica, clays, calcium carbonates) can be interpreted using a straightforward hy- dro-sedimentary model. Established to explain the geochemical dynamics of Lake Chad, this model is based on a bio- geochemical cycle of the main elements (i.e. silicium, calcium) directly controlled by the local hydrological balance (i.e. rainfall/evaporation ratio). All these results show that a detailed study of sedimentological features can provide impor- tant paleohydrological informations about the regional aridification since ca 6500 14C BP.
Resumo:
A model has been developed for evaluating grain size distributions in primary crystallizations where the grain growth is diffusion controlled. The body of the model is grounded in a recently presented mean-field integration of the nucleation and growth kinetic equations, modified conveniently in order to take into account a radius-dependent growth rate, as occurs in diffusion-controlled growth. The classical diffusion theory is considered, and a modification of this is proposed to take into account interference of the diffusion profiles between neighbor grains. The potentiality of the mean-field model to give detailed information on the grain size distribution and transformed volume fraction for transformations driven by nucleation and either interface- or diffusion-controlled growth processes is demonstrated. The model is evaluated for the primary crystallization of an amorphous alloy, giving an excellent agreement with experimental data. Grain size distributions are computed, and their properties are discussed.
Resumo:
A preparation of organic working standards for the online measurement of C-13/C-12 and O-18/O-16 ratios in biological material is presented. The organic working standards are simple and inexpensive C-3 and C-4 carbohydrates ( sugars or cellulose) from distinct geographic origin, including white sugar, toilet and XEROX papers from Switzerland, maize from Ivory Coast, cane sugar from Brazil, papyrus from Egypt, and the core of the stem of a Cyperus papyrus plant from Kenya. These photosynthetic products were compared with International Atomic Energy standards CH-3 and CH-6 and other calibration materials. The presented working standards cover a 15 parts per thousand range of C-13/C-12 ratios and 9 parts per thousand for O-18/O-16, with a precision < +/- 0.2 parts per thousand for n > 10.
Resumo:
Polymorphous Si is a nanostructured form of hydrogenated amorphous Si that contains a small fraction of Si nanocrystals or clusters. Its thermally induced transformations such as relaxation, dehydrogenation, and crystallization have been studied by calorimetry and evolved gas analysis as a complementary technique. The observed behavior has been compared to that of conventional hydrogenated amorphous Si and amorphous Si nanoparticles. In the temperature range of our experiments (650700 C), crystallization takes place at almost the same temperature in polymorphous and in amorphous Si. In contrast, dehydrogenation processes reflect the presence of different hydrogen states. The calorimetry and evolved gas analysis thermograms clearly show that polymorphous Si shares hydrogen states of both amorphous Si and Si nanoparticles. Finally, the total energy of the main SiH group present in polymorphous Si has been quantified
Resumo:
Oxidation of amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition were investigated. Their hydrogen content has a great influence on the oxidation rate at low temperature. When the mass gain is recorded during a heating ramp in dry air, an oxidation process at low temperature is identified with an onset around 250°C. This temperature onset is similar to that of hydrogen desorption. It is shown that the oxygen uptake during this process almost equals the number of hydrogen atoms present in the nanoparticles. To explain this correlation, we propose that oxidation at low temperature is triggered by the process of hydrogen desorption
Resumo:
Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.
Resumo:
The objective of this work was to investigate the influence of 1-methylcyclopropene (1-MCP) at 300 nL L-1 on activities of cell wall hidrolytic enzymes and pectin breakdown changes which Sapodilla (Manilkara zapota cv. Itapirema 31) cell wall undergoes during ripening. Sapodilla were treated with ethylene antagonist 1-MCP at 300 nL L-1 for 12 hours and then, stored under a modified atmosphere at 25º C for 23 days. Firmness, total and soluble pectin and cell wall enzymes were monitored during storage. 1-MCP at 300 nL L-1 for 12 hours delayed significantly softening of sapodilla for 11 days at 25º C. 1-MCP postharvest treatment affected the activities of cell wall degrading enzymes pectinmethylesterase and polygalacturonase and completely suppressed increases in beta-galactosidase for 8 days, resulting in less pectin solubilization. Beta-galactosidase seems relevant to softening of sapodilla and is probably responsible for modification of both pectin and xyloglucan-cellulose microfibril network.
Resumo:
The objective of this work was to evaluate elephant grass (Pennisetum purpureum Schum.) genotypes for bioenergy production by direct biomass combustion. Five elephant grass genotypes grown in two different soil types, both of low fertility, were evaluated. The experiment was carried out at Embrapa Agrobiologia field station in Seropédica, RJ, Brazil. The design was in randomized complete blocks, with split plots and four replicates. The genotypes studied were Cameroon, Bag 02, Gramafante, Roxo and CNPGL F06-3. Evaluations were made for biomass production, total biomass nitrogen, biomass nitrogen from biological fixation, carbon/nitrogen and stem/leaf ratios, and contents of fiber, lignin, cellulose and ash. The dry matter yields ranged from 45 to 67 Mg ha-1. Genotype Roxo had the lowest yield and genotypes Bag 02 and Cameroon had the highest ones. The biomass nitrogen accumulation varied from 240 to 343 kg ha-1. The plant nitrogen from biological fixation was 51% in average. The carbon/nitrogen and stem/leaf ratios and the contents of fiber, lignin, cellulose and ash did not vary among the genotypes. The five genotypes are suitable for energy production through combustion.
Resumo:
The aim of this work was to evaluate the efficiency of carboxymethyl cellulose (CMC) and starch blends as carrier materials of rhizobial inoculants regarding their capacity to maintain viable cells and promote cowpea (Vigna unguiculata) nodulation. The experimental design adopted was completely randomized, with three replicates. Forty different compositions of carboxymethyl cellulose (CMC) with starch, compatibilized or not with different proportions of MgO or ZnO, were evaluated regarding their ability of maintaining rhizobial viable cells during the storage period of one month at room temperature, in an initial screening. Thereafter, selected inoculant carrier blends were evaluated regarding their ability to maintain viable rhizobial cells for a period of 165 days, and their performance as inoculant carriers was compared to a peat-based inoculant carrier under greenhouse conditions. Rhizobial cells were better maintained in blends containing 50-60% CMC. Compatibilizing agents did not increase survival of rhizobial cells for 30 days of storage. The cowpea nodulation of polymer blends was statistically the same of peat-based inoculants. CMC/starch polymer blends are efficient carriers to rhizobial inoculants for up to 165 days of storage, when compatibilized with MgO (1%).
Resumo:
The objective of this work was to determine physiological stress markers, neutrophil:lymphocyte ratio (N/L) and corticoid concentrations, in gestating sows under different cooling systems. A sprinkling cooling system (SS) and a system based on fan-assisted evaporative cellulose pad (PS) were used. SS showed higher N/L ratio (1.095) than PS (0.850). Corticoid concentrations showed high variability. Corticosteroids are more efficient short-term stress indicators while N/L ratio is a good medium and long-term stress indicator. According to N/L ratio, gestating sows under PS benefit from a higher level of welfare.
Resumo:
[spa]Objetivo: El objetivo de este estudio es el diseño de un parche bucoadhesivo para la administración transbucal de clorhidrato de doxepina utilizando diferentes polímeros así como la caracterización de dichos sistemas en cuanto al análisis calorimétrico y la capacidad de hinchamiento.Materiales y métodos: Se ha utilizado clorhidrato de doxepina y diferentes polímeros, carboximetilcelulosa sódica, hidroxipropilmetilcelulosa y chitosan. La calorimetría diferencial de barrido (DSC) se ha realizado en un dispositivo Mettler FP 80 equipado con un horno FP 85 y la capacidad de hinchamiento utilizando placas de agar.Resultados: Se obtienen termogramas de los parches y las mezclas físicas donde se observan transiciones endotérmicas entre 30 y 120º C y el pico endotérmico del principio activo en las mezclas físicas binarias. La entalpía de deshidratación es similar en los polímeros de carboximetilcelulosa sódica y chitosan (281 J/g) siendo menor en la película de hidroxipropilmetilcelulosa (251 J/g), al igual que el porcentaje de hidratación donde se demuestra que los parches elaborados con hidroxipropilmetilcelulosa presenta menor tendencia a captar agua (55,91 %) frente al 67,04 % y 67,30 % de la carboximetilcelulosa sódica y chitosan, respectivamente.Conclusión: Los resultados obtenidos muestran que existe compatibilidad entre los componentes de la formulación y los datos de entalpía se correlacionan con los datos obtenidos en el ensayo de hinchamiento.[eng]The aim of this study is to design a bucoadhesive patch for the transbuccal administration of doxepin hydrochloride using different polymers as well as the characterization of these systems for calorimetric analysis and the swelling capacity. Materials and methods: Doxepin hydrochloride was used as well as various polymers; carboxymethylcellulose sodium, hydroxypropylmethyl cellulose and chitosan. Differential scanning calorimetry (DSC) was carried out using a Mettler FP 80 device equipped with a FP 85 oven and the swelling capacity using agar plates. Results: Thermograms obtained patches and physical mixtures where there are endothermic transitions between 30 and 120º C and the endothermic peak of the active principle in binary physical mixtures. Dehydration enthalpy is similar in polymers of carboxymethylcellulose sodium and chitosan (281 J/g), the film having less hydroxypropylmethylcellulose (251 J/g), the percentage of moisture shows that the patches prepared with hydroxypropylmethylcellulose have less tendency to collect water (55.91 %) compared to 67.04 % and 67.30 % with sodium carboxymethylcellulose and chitosan, respectively. Conclusion: The results show that there is compatibility between the components of the formulation and the enthalpy data correlate