989 resultados para Alternation formation devices
Resumo:
Numerical modeling is used to explain the origin of the large ON/OFF ratios, ultralow leakage, and high ON-current densities exhibited by back-end-of-the-line-friendly access devices based on copper-containing mixed-ionic-electronic-conduction (MIEC) materials. Hall effect measurements confirm that the electronic current is hole dominated; a commercial semiconductor modeling tool is adapted to model MIEC. Motion of large populations of copper ions and vacancies leads to exponential increases in hole current, with a turn-ON voltage that depends on material bandgap. Device simulations match experimental observations as a function of temperature, electrode aspect ratio, thickness, and device diameter.
Resumo:
Sheet-like clouds are common in turbulent gas and perhaps form via collisions between turbulent gas flows. Having examined the evolution of an isothermal shocked slab in an earlier contribution, in this work we follow the evolution of a sheet-like cloud confined by (thermal) pressure and gas in it is allowed to cool. The extant purpose of this endeavour is to study the early phases of core-formation. The observed evolution of this cloud supports the conjecture that molecular clouds themselves are three-phase media (comprising viz. a stable cold and warm medium, and a third thermally unstable medium), though it appears, clouds may evolve in this manner irrespective of whether they are gravitationally bound. We report, this sheet fragments initially due to the growth of the thermal instability (TI) and some fragments are elongated, filament-like. Subsequently, relatively large fragments become gravitationally unstable and sub-fragment into smaller cores. The formation of cores appears to be a three stage process: first, growth of the TI leads to rapid fragmentation of the slab; second, relatively small fragments acquire mass via gas-accretion and/or merger and third, sufficiently massive fragments become susceptible to the gravitational instability and sub-fragment to form smaller cores. We investigate typical properties of clumps (and smaller cores) resulting from this fragmentation process. Findings of this work support the suggestion that the weak velocity field usually observed in dense clumps and smaller cores is likely seeded by the growth of dynamic instabilities. Simulations were performed using the smooth particle hydrodynamics algorithm.
Resumo:
The selective formation of a single isomer of a 3+2] self-assembled organic cage from a reaction mixture of an unsymmetrical aldehyde and a flexible amine is discussed. The experimental and theoretical findings suggest that in such a process, the geometric features of the aldehyde play a key role.
Resumo:
We present a hybrid finite element based methodology to solve the coupled fluid structure problem of squeeze film effects in vibratory MEMS devices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned devices often have a thin plate like structure vibrating normally to a fixed substrate, and are generally not perfectly vacuum packed. This results in a thin air film being trapped between the vibrating plate and the fixed substrate which behaves like a squeeze film offering both stiffness and damping. For accurate modelling of such devices the squeeze film effects must be incorporated. Extensive literature is available on squeeze film modelling, however only a few studies address the coupled fluid elasticity problem. The majority of the studies that account for the plate elasticity coupled with the fluid equation, either use approximate mode shapes for the plate or use iterative solution strategies. In an earlier work we presented a single step coupled methodology using only one type of displacement based element to solve the coupled problem. The displacement based finite element models suffer from locking issues when it comes to modelling very thin structures with the lateral dimensions much larger than the plate thickness as is typical in MEMS devices with squeeze film effects. In this work we present another coupled formulation where we have used hybrid elements to model the structural domain. The numerical results show a huge improvement in convergence and accuracy with coarse hybrid mesh as compared to displacement based formulations. We further compare our numerical results with experimental data from literature and find them to be in good accordance.
Resumo:
The exact process(es) that generate(s) dense filaments which then form prestellar cores within them is unclear. Here we study the formation of a dense filament using a relatively simple set-up of a pressure-confined, uniform-density cylinder. We examine if its propensity to form a dense filament and further, to the formation of prestellar cores along this filament, bears on the gravitational state of the initial volume of gas. We report a radial collapse leading to the formation of a dense filamentary cloud is likely when the initial volume of gas is at least critically stable (characterised by the approximate equality between the mass line-density for this volume and its maximum value). Though self-gravitating, this volume of gas, however, is not seen to be in free-fall. This post-collapse filament then fragments along its length due to the growth of a Jeans-like instability to form prestellar cores. We suggest dense filaments in typical star-forming clouds classified as gravitationally super-critical under the assumption of: (i) isothermality when in fact, they are not, and (ii) extended radial profiles as against pressure-truncated, that significantly over-estimates their mass line-density, are unlikely to experience gravitational free-fall. The radial density and temperature profile derived for this post-collapse filament is consistent with that deduced for typical filamentary clouds mapped in recent surveys of nearby star-forming regions.
Resumo:
The Dy3+ doped Y3-xDyxFe5O12 (x=0-3) nanopowders were prepared using microwave hydrothermal route. The structural and morphological studies were analyzed using transmission electron microscope, X-ray diffractometer and field emission scanning electron microscope. The nanopowders were sintered at 900 degrees C/90 min using microwave furnace. Dense ceramics with theoretical density of around 95% was obtained. Ferro magnetic resonance (FMR) spectrum and microwave absorption spectrum of Dy3+ doped YIG were studied, the signal exhibits a resonance character for all Dy3+ variations. It was observed that the location of the FMR signal peak at the field axes monotonically shifts to higher field with increasing Dy3+ content. The dielectric and magnetic properties (epsilon', epsilon `', mu' and mu `') of Dy3+ doped YIG were studied over a wide range of frequency (1-50 GHz). With increase of Dy3+ both epsilon' and mu' decreased. The low values of dielectric, magnetic properties and broad distribution of FMR line width of these ceramics are opening the real opportunity to use them for microwave devices above K- band frequency. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.
Resumo:
Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.
Resumo:
Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co- crystals or eutectics for the studied carboxylic acid/imide combinations.
Resumo:
Electromigration, mostly known for its damaging effects in microelectronic devices, is basically a material transport phenomenon driven by the electric field and kinetically controlled by diffusion. In this work, we show how controlled electromigration can be used to create scientifically interesting and technologically useful micro-/nano-scale patterns, which are otherwise extremely difficult to fabricate using conventional cleanroom practices, and present a few examples of such patterns. In a solid thin-film structure, electromigration is used to generate pores at preset locations for enhancing the sensitivity of a MEMS sensor. In addition to electromigration in solids, the flow instability associated with the electromigration-induced long-range flow of liquid metals is shown to form numerous structures with high surface area to volume ratio. In very thin solid films on non-conductive substrates, solidification of flow-affected region results in the formation of several features, such as nano-/micro-sized discrete metallic beads, 3D structures consisting of nano-stepped stairs, etc.
Resumo:
The cytological architecture of the synaptonemal complex (SC), a meiosis-specific proteinaceous structure, is evolutionarily conserved among eukaryotes. However, little is known about the biochemical properties of SC components or the mechanisms underlying their roles in meiotic chromosome synapsis and recombination. Functional analysis of Saccharomyces cerevisiae Hop1, a key structural component of SC, has begun to reveal important insights into its function in interhomolog recombination. Previously, we showed that Hop1 is a structure-specific DNA-binding protein, exhibits higher binding affinity for the Holliday junction, and induces structural distortion at the core of the junction. Furthermore, Hop1 promotes DNA condensation and intra- and intermolecular synapsis between duplex DNA molecules. Here, we show that Hop1 possesses a modular domain organization, consisting of an intrinsically disordered N-terminal domain and a protease-resistant C-terminal domain (Hop1CTD). Furthermore, we found that Hop1CTD exhibits strong homotypic as well as heterotypic protein protein interactions, and its biochemical activities were similar to those of the full-length Hop1 protein. However, Hop1CTD failed to complement the meiotic recombination defects of the Delta hop1 strain, indicating that both N- and C-terminal domains of Hop1 are essential for meiosis and spore formation. Altogether, our findings reveal novel insights into the structure-function relationships of Hop1 and help to further our understanding of its role in meiotic chromosome synapsis and recombination.
Resumo:
Cocrystallization of pyridoxine (vitamin B6) with several biologically important molecules was undertaken with the intent of successfully designing various hydrogen bonded adducts such as salts, cocrystals, and eutectics. Pyridoxine formed eutectics with isoniazid (an antitubercular drug) and nicotinic acid (vitamin B3) and molecular salts with para-aminobenzoic acid (a bioactive) and saccharin (an artificial sweetener), respectively, in accordance to our design strategy. A salt cocrystal, a precisely conjugate acid-base cocrystal, was obtained for the pyridoxine-para-nitrobenzoic acid combination. The role of supramolecular affinity of hydrogen bonding functional groups and Delta pK(a) differences leading to the formation of above diverse adducts was discussed. This study underpins the need for full-fledged supramolecular compatibility studies of multivitamin/drug combinations toward the development of optimal and/or synergistic combination formulations.
Resumo:
Communication and environmental monitoring play a major role in underground mining both from production and safety point of view. However, underground mining communication as well as monitoring devices encounter several challenges because of the nature of underground features and characteristics. Lack of real time information from underground workings may hamper production and create serious safety risks. Proper communication and monitoring devices are inevitable requirements for better production and improved safety. Communication and environmental monitoring devices are basic element of underground mine infrastructure. This paper describes the performance of communication and monitoring devices being used in underground mines. An attempt has been made to assess the safety risks by these devices which may dictate future research directions.
Resumo:
Titanium dioxide thin films were deposited by RF reactive magnetron sputtering technique on p-type silicon(100) substrates held at temperatures in the range 303-673 K. The influence of substrate temperature on the core level binding energies, chemical bonding configuration, crystallographic structure and dielectric properties was investigated. X-ray photoelectron spectroscopy studies and Fourier transform infrared transmittance data confirmed the formation of stoichiometric films with anatase phase at a substrate temperature of 673 K. The films formed at 303 K were nanocrystalline with amorphous matrix while those deposited at 673 K were transformed in to crystalline phase and growth of grains in pyramidal like structure as confirmed by X-ray diffraction and atomic force microscopy respectively. Metal-oxide-semiconductor capacitors were fabricated with the configuration of Al/TiO2/Si structures. The current voltage, capacitance voltage and conductance voltage characteristics were studied to understand the electrical conduction and dielectric properties of the MOS devices. The leakage current density (at gate voltage of 2 V) decreased from 2.2 x 10(-6) to 1.7 x 10(-7) A/cm(2), the interface trap density decreased from 1.2 x 10(13) to 2.1 x 10(12) cm(-2) eV(-1) and the dielectric constant increased from 14 to 36 with increase of substrate temperature from 303 to 673 K.
Resumo:
We perform two and three dimensional numerical simulations of plume formation in density and viscosity stratified fluid systems. We show that the ambient to plume fluid viscosity ratio strongly affects the near wall plume structures (line or sheet plumes) such as plume spacing and shape of plumes. We observe that where mushroom-like plumes are observed for lower viscosity ratios, taller plumes with bulbous heads form for high viscosity ratios. Plume structure and spacing are in good agreement with experimental results. By studying the geometry of the line plumes and the flow in the circulation cells, we discuss the mechanisms of their formation and the dynamics of merging. We show that an increase in the viscosity ratio decreases the total length of line plumes in the planform which indicates a decreased mixing at higher viscosity ratios. (C) 2015 Elsevier Ltd. All rights reserved.